Skip to main content
Log in

Wear characteristics of atomic force microscopy tips: A review

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Based on the interaction between the extremely sharp tip and the sample, atomic force microscopy (AFM) has been widely utilized to explore the surface phenomena at the nano-scale. During the AFM measurements such as topographical imaging, force spectroscopy, and friction loop, the tip is often damaged due to wear, which in turn forms the artifacts in the AFM images and increase the uncertainties of material properties measured by an AFM. In this paper, based on the numerous studies performed by researchers, the wear characteristics of silicon- and carbon-based tips, and metal coated tips are comprehensively reviewed, including the characterization methods and models for tip wear, with an aim to provide an overview of key findings of tip wear that can be useful for AFM scientists and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F., and Gerber, C., “Atomic Force Microscope,” Physical Review Letters, Vol. 56, No. 9, pp. 930–933, 1986.

    Article  Google Scholar 

  2. Sung, I. H., Yang, J. C., Kim, D. E., and Shin, B. S., “Micro/Nano-Tribological Characteristics of Self-Assembled Monolayer and Its Application in Nano-Structure Fabrication,” Wear, Vol. 255, No. 7, pp. 808–818, 2003.

    Article  Google Scholar 

  3. Giesbers, A. J. M., Zeitler, U., Neubeck, S., Freitag, F., Novoselov, K., and Maan, J., “Nanolithography and Manipulation of Graphene using an Atomic Force Microscope,” Solid State Communications, Vol. 147, No. 9, pp. 366–369, 2008.

    Article  Google Scholar 

  4. Mamin, H. J. and Rugar, D., “Thermomechanical Writing with an Atomic Force Microscope Tip,” Applied Physics Letters, Vol. 61, No. 8, pp. 1003–1005, 1992.

    Article  Google Scholar 

  5. Terris, B. D., Rishton, S. A., Mamin, H. J., Ried, R. P., and Rugar, D., “Atomic Force Microscope-based Data Storage: Track Servo and Wear Study,” Applied Physics A: Materials Science & Processing, Vol. 66, No. 1, pp. S809–S813, 1998.

    Article  Google Scholar 

  6. Bhushan, B. and Kwak, K. J., “Noble Metal-Coated Probes Sliding at up to 100 mm s-1 Against PZT Films for AFM Probe-based Ferroelectric Recording Technology,” Journal of Physics: Condensed Matter, Vol. 20, No. 22, Paper No. 225013, 2008.

    Google Scholar 

  7. Kim, Y., and Lieber, C. M., “Machining Oxide Thin Films with an Atomic Force Microscope: Pattern and Object Formation on the Nanometer Scale,” Science, Vol. 257, No. 5068, pp. 375–377, 1992.

    Article  Google Scholar 

  8. Schaefer, D. M., Reifenberger, R., Patil, A., and Andres, R. P., “Fabrication of TwoDimensional Arrays of NanometerSize Clusters with the Atomic Force Microscope,” Applied Physics Letters, Vol. 66, No. 8, pp. 1012–1014, 1995.

    Article  Google Scholar 

  9. Kopycinska-Müller, M., Geiss, R. H., and Hurley, D. C., “Contact Mechanics and Tip Shape in AFM-based Nanomechanical Measurements,” Ultramicroscopy, Vol. 106, No. 6, pp. 466–474, 2006.

    Article  Google Scholar 

  10. Dagata, J. A., “Device Fabrication by Scanned Probe Oxidation,” Science, Vol. 270, No. 5242, pp. 1625–1625, 1995.

    Article  Google Scholar 

  11. Pérez-Murano, F., Birkelund, K., Morimoto, K., and Dagata, J. A., “Voltage Modulation Scanned Probe Oxidation,” Applied Physics Letters, Vol. 75, No. 2, pp. 199–201, 1999.

    Article  Google Scholar 

  12. Archard, J. F. and Hirst, W., “The Wear of Metals under Unlubricated Conditions,” Proceedings of the Royal Society of London. Series A. Mathematical, Physical & Engineering Sciences, Vol. 236, No. 1206, pp. 397–410, 1956.

    Article  Google Scholar 

  13. Rabinowicz, E., “Friction and Wear of Materials,” Wiley, 2nd Ed., pp. 128–132, 1995.

    Google Scholar 

  14. Colaço, R., “An AFM Study of Single-Contact Abrasive Wear: The Rabinowicz Wear Equation Revisited,” Wear, Vol. 267, No. 11, pp. 1772–1776, 2009.

    Article  Google Scholar 

  15. Merkle, A. P. and Marks, L. D., “Liquid-Like Tribology of Gold Studied by in Situ TEM,” Wear, Vol. 265, No. 11, pp. 1864–1869, 2008.

    Article  Google Scholar 

  16. Filippov, A. E., Popov, V. L., and Urbakh, M., “Mechanism of Wear and Ripple Formation Induced by the Mechanical Action of an Atomic Force Microscope Tip,” Physical Review Letters, Vol. 106, No. 2, Paper No. 025502, 2011.

    Google Scholar 

  17. Kim, H. J., Yoo, S. S., and Kim, D. E., “Nano-Scale Wear: A Review,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709–1718, 2012.

    Article  Google Scholar 

  18. Tambe, N. S. and Bhushan, B., “Nanoscale Friction and Wear Maps,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 366, No. 1869, pp. 1405–1424, 2008.

    Article  Google Scholar 

  19. Albrecht, T. R., Akamine, S., Carver, T. E., and Quate, C. F., “Microfabrication of Cantilever Styli for the Atomic Force Microscope,” Journal of Vacuum Science & Technology A, Vol. 8, No. 4, pp. 3386–3396, 1990.

    Article  Google Scholar 

  20. Wolter, O., Bayer, T., and Greschner, J., “Micromachined Silicon Sensors for Scanning Force Microscopy,” Journal of Vacuum Science & Technology B, Vol. 9, No. 2, pp. 1353–1357, 1991.

    Article  Google Scholar 

  21. Marcus, R., Ravi, T., Gmitter, T., Chin, K., Liu, D., et al., “Formation of Silicon Tips with < 1 nm Radius,” Applied Physics Letters, Vol. 56, No. 3, pp. 236–238, 1990.

    Article  Google Scholar 

  22. Ravi, T., Marcus, R., and Liu, D., “Oxidation Sharpening of Silicon Tips,” Journal of Vacuum Science & Technology B, Vol. 9, No. 6, pp. 2733–2737, 1991.

    Article  Google Scholar 

  23. Folch, A., Wrighton, M. S., and Schmidt, M. A., “Microfabrication of Oxidation-Sharpened Silicon Tips on Silicon Nitride Cantilevers for Atomic Force Microscopy,” Journal of Microelectromechanical Systems, Vol. 6, No. 4, pp. 303–306, 1997.

    Article  Google Scholar 

  24. Lantz, M. A., O’Shea, S. J., and Welland, M. E., “Characterization of Tips for Conducting Atomic Force Microscopy in Ultrahigh Vacuum,” Review of Scientific Instruments, Vol. 69, No. 4, pp. 1757–1764, 1998.

    Article  Google Scholar 

  25. Chung, K. H. and Kim, D. E., “Fundamental Investigation of Micro Wear Rate using an Atomic Force Microscope,” Tribology Letters, Vol. 15, No. 2, pp. 135–144, 2003.

    Article  Google Scholar 

  26. Chung, K. H., Lee, Y. H., Kim, D. E., Yoo, J., and Hong, S., “Tribological Characteristics of Probe Tip and PZT Media for AFM-based Recording Technology,” IEEE Transactions on Magnetics, Vol. 41, No. 2, pp. 849–854, 2005.

    Article  Google Scholar 

  27. Geiss, R. H., Kopycinska-Müller, M., and Hurley, D. C., “Wear of Si Cantilever Tips used in Atomic Force Acoustic Microscopy,” Microscopy and Microanalysis, Vol. 11, No. S02, pp. 364–365, 2005.

    Google Scholar 

  28. Chung, K. H., Lee, Y. H., and Kim, D. E., “Characteristics of Fracture during the Approach Process and Wear Mechanism of a Silicon AFM Tip,” Ultramicroscopy, Vol. 102, No. 2, pp. 161–171, 2005.

    Article  Google Scholar 

  29. Chung, K. H. and Kim, D. E., “Wear Characteristics of Diamond-Coated Atomic Force Microscope Probe,” Ultramicroscopy, Vol. 108, No. 1, pp. 1–10, 2007.

    Article  Google Scholar 

  30. Tayebi, N., Zhang, Y., Chen, R. J., Tran, Q., Chen, R., et al., “An Ultraclean Tip-Wear Reduction Scheme for Ultrahigh Density Scanning Probe-based Data Storage,” ACS Nano, Vol. 4, No. 10, pp. 5713–5720, 2010.

    Article  Google Scholar 

  31. Fletcher, P. C., Felts, J. R., Dai, Z., Jacobs, T. D., Zeng, H., et al., “Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-based Nanomanufacturing,” ACS Nano, Vol. 4, No. 6, pp. 3338–3344, 2010.

    Article  Google Scholar 

  32. Lantz, M. A., Gotsmann, B., Jaroenapibal, P., Jacobs, T. D., O’Connor, S. D., et al., “Wear Resistant Nanoscale Silicon Carbide Tips for Scanning Probe Applications,” Advanced Functional Materials, Vol. 22, No. 8, pp. 1639–1645, 2012.

    Article  Google Scholar 

  33. Jacobs, T. D. and Carpick, R. W., “Nanoscale Wear as a Stress-Assisted Chemical Reaction,” Nature Nanotechnology, Vol. 8, No. 2, pp. 108–112, 2013.

    Article  Google Scholar 

  34. Khurshudov, A. and Kato, K., “Wear of the Atomic Force Microscope Tip under Light Load, Studied by Atomic Force Microscopy,” Ultramicroscopy, Vol. 60, No. 1, pp. 11–16, 1995.

    Article  Google Scholar 

  35. Khurshudov, A. G., Kato, K., and Koide, H., “Nano-Wear of the Diamond AFM Probing Tip under Scratching of Silicon, Studied by AFM,” Tribology Letters, Vol. 2, No. 4, pp. 345–354, 1996.

    Article  Google Scholar 

  36. Bloo, M. L., Haitjema, H., and Pril, W. O., “Deformation and Wear of Pyramidal, Silicon-Nitride AFM Tips Scanning Micrometre-Size Features in Contact Mode,” Measurement, Vol. 25, No. 3, pp. 203–211, 1999.

    Article  Google Scholar 

  37. Maw, W., Stevens, F., Langford, S. C., and Dickinson, J. T., “Single Asperity Tribochemical Wear of Silicon Nitride Studied by Atomic Force Microscopy,” Journal of Applied Physics, Vol. 92, No. 9, pp. 5103–5109, 2002.

    Article  Google Scholar 

  38. Villarrubia, J. S., “Algorithm for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation,” Journal of Research-National Institute of Standards and Technology, Vol. 102, No. 4, pp. 425–454, 1997.

    Article  Google Scholar 

  39. Tian, F., Qian, X., and Villarrubia, J., “Blind Estimation of General Tip Shape in AFM Imaging,” Ultramicroscopy, Vol. 109, No. 1, pp. 44–53, 2008.

    Article  Google Scholar 

  40. Dongmo, L. S., Villarrubia, J. S., Jones, S. N., Renegar, T. B., Postek, M. T., and Song, J. F., “Experimental Test of Blind Tip Reconstruction for Scanning Probe Microscopy,” Ultramicroscopy, Vol. 85, No. 3, pp. 141–153, 2000.

    Article  Google Scholar 

  41. Liu, J., Notbohm, J. K., Carpick, R. W., and Turner, K. T., “Method for Characterizing Nanoscale Wear of Atomic Force Microscope Tips,” ACS Nano, Vol. 4, No. 7, pp. 3763–3772, 2010.

    Article  Google Scholar 

  42. Liu, J., Grierson, D. S. Moldovan, N., Notbohm, J., Li, S., et al., “Preventing Nanoscale Wear of Atomic Force Microscopy Tips through the Use of Monolithic Ultrananocrystalline Diamond Probes,” Small, Vol. 6, No. 10, pp. 1140–1149, 2010.

    Article  Google Scholar 

  43. Chung, K. H., Lee, Y. H., Kim, H. J., and Kim, D. E., “Fundamental Investigation of the Wear Progression of Silicon Atomic Force Microscope Probes,” Tribology Letters, Vol. 52, No. 2, pp. 315–325, 2013.

    Article  Google Scholar 

  44. Johnson, K. L., Kendall, K., and Roberts, A. D., “Surface Energy and the Contact of Elastic Solids,” Proceedings of the Royal Society of London. A. Mathematical, Physical & Engineering Sciences, Vol. 324, No. 1558, pp. 301–313, 1971.

    Article  Google Scholar 

  45. Derjaguin, B. V., Muller, V. M., and Toporov, Y. P., “Effect of Contact Deformations on the Adhesion of Particles,” Journal of Colloid and Interface Science, Vol. 53, No. 2, pp. 314–326, 1975.

    Article  Google Scholar 

  46. Muller, V. M., Derjaguin, B. V., and Toporov, Y. P., “On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane,” Colloids and Surfaces, Vol. 7, No. 3, pp. 251–259, 1983.

    Article  Google Scholar 

  47. Maugis, D., “Adhesion of Spheres: The JKR-DMT Transition using a Dugdale Model,” Journal of Colloid and Interface Science, Vol. 150, No. 1, pp. 243–269, 1992.

    Article  Google Scholar 

  48. Gotsmann, B. and Lantz, M. A., “Atomistic Wear in a Single Asperity Sliding Contact,” Physical Review Letters, Vol. 101, No. 12, Paper No. 125501, 2008.

    Google Scholar 

  49. Killgore, J. P., Geiss, R. H., and Hurley, D. C., “Continuous Measurement of Atomic Force Microscope Tip Wear by Contact Resonance Force Microscopy,” Small, Vol. 7, No. 8, pp. 1018–1022, 2011.

    Article  Google Scholar 

  50. Evans, A. G. And Wilshaw, T. R., “Quasi-Static Solid Particle Damage in Brittle Solids — I. Observations Analysis and Implications,” Acta Metallurgica, Vol. 24, No. 10, PP. 939–956, 1976.

    Article  Google Scholar 

  51. Evans, A. G. and Marshall, D. B., “Wear Mechanisms in Ceramics,” in: Fundamentals of Friction and Wear of Meaterials, Rigney, D. A., (Ed.), American Society for Metals, 1981.

    Google Scholar 

  52. Bhushan, B., “Principles and Applications of Tribology,” Jon Wiley & Sons, Page No. 523, 1999.

    Google Scholar 

  53. Quinn, T. F. J., “Review of Oxidational Wear: Part I: The Origins of Oxidational Wear,” Tribology International, Vol. 16, No. 5, pp. 257–271, 1983.

    Article  Google Scholar 

  54. Quinn, T. F. J., “Review of Oxidational Wear Part II: Recent Developments and Future Trends in Oxidational Wear Research,” Tribology International, Vol. 16, No. 6, pp. 305–315, 1983.

    Article  Google Scholar 

  55. Archard, J. F., “Elastic Deformation and the Laws of Friction,” Proceedings of the Royal Society of London. Series A. Mathematical, Physical & Engineering Sciences, Vol. 243, No. 1233, pp. 190–205, 1957.

    Article  Google Scholar 

  56. Johnson, K. L., “Contact Mechanics,” Cambridge University Press, 1985.

    Book  Google Scholar 

  57. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M. A., et al., “Ultralow Nanoscale Wear through Atom-by-Atom Attrition in Silicon-Containing Diamond-Like Carbon,” Nature Nanotechnology, Vol. 5, No. 3, pp. 181–185, 2010.

    Article  Google Scholar 

  58. Katsuki, F., Kamei, K., Saguchi, A., Takahashi, W., and Watanabe, J., “AFM Studies on the Difference in Wear Behavior Between Si and SiO2 in KOH Solution,” Journal of the Electrochemical Society, Vol. 147, No. 6, pp. 2328–2331, 2000.

    Article  Google Scholar 

  59. Carpick, R. W. and Salmeron, M., “Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy,” Chemical Reviews, Vol. 97, No. 4, pp. 1163–1194, 1997.

    Article  Google Scholar 

  60. Chung, K. H., Lee, J. W., and Kim, D. E., “Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM,” KSME International Journal, Vol. 18, No. 10, pp. 1772–1781, 2004.

    Article  Google Scholar 

  61. Chung, K. H., Lee, Y. H., Kim, Y. T., Kim, D. E., Yoo, J., and Hong, S., “Nano-Tribological Characteristics of PZT Thin Film Investigated by Atomic Force Microscopy,” Surface and Coatings Technology, Vol. 201, No. 18, pp. 7983–7991, 2007.

    Article  Google Scholar 

  62. Chung, K. H., Lee, Y. H., Kim, Y. T., Kim, D. E., Yoo, J., and Hong, S., “Nano-Tribological Characteristics of PZT Thin Film Investigated by Atomic Force Microscopy,” Surface and Coatings Technology, Vol. 201, No. 18, pp. 7983–7991, 2007.

    Article  Google Scholar 

  63. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E., “Nanotubes as Nanoprobes in Scanning Probe Microscopy,” Nature, Vol. 384, No. 6605, pp. 147–150, 1996.

    Article  Google Scholar 

  64. Hafner, J. H., Cheung, C.-L., Woolley, A., and Lieber, C., “Structural and Functional Imaging with Carbon Nanotube AFM Probes,” Progress in Biophysics and Molecular Biology, Vol. 77, No. 1, pp. 73–110, 2001.

    Article  Google Scholar 

  65. Larsen, T., Moloni, K., Flack, F., Eriksson, M. A., Lagally, M. G., and Black, C. T., “Comparison of Wear Characteristics of Etched-Silicon and Carbon Nanotube Atomic-Force Microscopy Probes,” Applied Physics Letters, Vol. 80, No. 11, pp. 1996–1998, 2002.

    Article  Google Scholar 

  66. Wilson, N. R. and Macpherson, J. V., “Carbon Nanotube Tips for Atomic Force Microscopy,” Nature Nanotechnology, Vol. 4, No. 8, pp. 483–491, 2009.

    Article  Google Scholar 

  67. Willemsen, O. H., Snel, M. M., Cambi, A., Greve, J., De Grooth, B. G., and Figdor, C. G., “Biomolecular Interactions Measured by Atomic Force Microscopy,” Biophysical Journal, Vol. 79, No. 6, pp. 3267–3281, 2000.

    Article  Google Scholar 

  68. Chung, K. H., Bhadriraju, K., Spurlin, T. A., Cook, R. F., and Plant, A. L., “Nanomechanical Properties of Thin Films of Type I Collagen Fibrils,” Langmuir, Vol. 26, No. 5, pp. 3629–3636, 2010.

    Article  Google Scholar 

  69. Chung, K. H., Chen, A. K., Anderton, C. R., Bhadriraju, K., Plant, A. L., et al., “Frictional Properties of Native and Functionalized Type I Collagen Thin Films,” Applied Physics Letters, Vol. 103, No. 14, Paper No. 143703, 2013.

    Google Scholar 

  70. O’Shea, S., Atta, R., and Welland, M., “Characterization of Tips for Conducting Atomic Force Microscopy,” Review of Scientific Instruments, Vol. 66, No. 3, pp. 2508–2512, 1995.

    Article  Google Scholar 

  71. Bhushan, B., Kwak, K. J., and Palacio, M., “Nanotribology and Nanomechanics of Afm Probe-based Data Recording Technology,” Journal of Physics: Condensed Matter, Vol. 20, No. 36, Paper No. 365207, 2008.

    Google Scholar 

  72. Bhushan, B. and Kwak, K. J., “Velocity Dependence of Nanoscale Wear in Atomic Force Microscopy,” Applied Physics Letters, Vol. 91, No. 16, Paper No. 163113, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koo-Hyun Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, KH. Wear characteristics of atomic force microscopy tips: A review. Int. J. Precis. Eng. Manuf. 15, 2219–2230 (2014). https://doi.org/10.1007/s12541-014-0584-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0584-6

Keywords

Navigation