Skip to main content

Friction and Wear on the Atomic Scale

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Friction has long been the subject of research: the empirical da Vinci–Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

We will begin by introducing friction force microscopy, including the calibration of cantilever force sensors and special aspects of the ultrahigh vacuum environment. The empirical Tomlinson model often used to describe atomic stick-slip results is therefore presented in detail. We review experimental results regarding atomic friction, including thermal activation, velocity dependence and temperature dependence. The geometry of the contact is crucial to the interpretation of experimental results, such as the calculation of the lateral contact stiffness, as we shall see. The onset of wear on the atomic scale has recently been studied experimentally and it is described here. In order to compare results, we present molecular dynamics simulations that are directly related to atomic friction experiments. The chapter ends with a discussion of dissipation measurements performed in noncontact force microscopy, which may become an important complementary tool for the study of mechanical dissipation in nanoscopic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

DMT:

Derjaguin–Muller–Toporov

FFM:

friction force microscope

FFM:

friction force microscopy

FKT:

Frenkel–Kontorova–Tomlinson

JKR:

Johnson–Kendall–Roberts

LFM:

lateral force microscope

LFM:

lateral force microscopy

MD:

molecular dynamics

NC-AFM:

noncontact atomic force microscopy

PTFE:

polytetrafluoroethylene

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

UHV:

ultrahigh vacuum

References

  1. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  Google Scholar 

  2. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  3. O. Marti, J. Colchero, J. Mlynek: Combined scanning force and friction microscopy of mica, Nanotechnology 1, 141–144 (1990)

    Article  Google Scholar 

  4. G. Meyer, N. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)

    Article  Google Scholar 

  5. G. Neubauer, S.R. Cohen, G.M. McClelland, D.E. Horn, C.M. Mate: Force microscopy with a bidirectional capacitance sensor, Rev. Sci. Instrum. 61, 2296–2308 (1990)

    Article  Google Scholar 

  6. G.M. McClelland, J.N. Glosli: Friction at the atomic scale. In: NATO ASI Series E, Vol. 220, ed. by L. Singer, H.M. Pollock (Kluwer, Dordrecht 1992) pp. 405–425

    Google Scholar 

  7. R. Linnemann, T. Gotszalk, I.W. Rangelow, P. Dumania, E. Oesterschulze: Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers, J. Vac. Sci. Technol. B 14, 856–860 (1996)

    Article  Google Scholar 

  8. R. Lüthi: Untersuchungen zur Nanotribologie und zur Auflösungsgrenze im Ultrahochvakuum mittels Rasterkraftmikroskopie. Ph.D. Thesis (Univ. of Basel, Basel 1996)

    Google Scholar 

  9. M. Nonnenmacher, J. Greschner, O. Wolter, R. Kassing: Scanning force microscopy with micromachined silicon sensors, J. Vac. Sci. Technol. B 9, 1358–1362 (1991)

    Article  Google Scholar 

  10. J. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)

    Article  Google Scholar 

  11. J.L. Hutter, J. Bechhoefer: Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  Google Scholar 

  12. H.J. Butt, M. Jaschke: Calculation of thermal noise in atomic-force microscopy, Nanotechnology 6, 1–7 (1995)

    Article  Google Scholar 

  13. J.M. Neumeister, W.A. Ducker: Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers, Rev. Sci. Instrum. 65, 2527–2531 (1994)

    Article  Google Scholar 

  14. D.F. Ogletree, R.W. Carpick, M. Salmeron: Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  Google Scholar 

  15. E. Gnecco: AFM study of friction phenomena on the nanometer scale. Ph.D. Thesis (Univ. of Genova, Genova 2001)

    Google Scholar 

  16. U.D. Schwarz, P. Köster, R. Wiesendanger: Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum. 67, 2560–2567 (1996)

    Article  Google Scholar 

  17. J.E. Sader, C.P. Green: In-plane deformation of cantilever plates with applications to lateral force microscopy, Rev. Sci. Instrum. 75, 878–883 (2004)

    Article  Google Scholar 

  18. S.A. Edwards, W.A. Ducker, J.E. Sader: Influence of atomic force microscope cantilever tilt and induced torque on force measurements, J. Appl. Phys. 103, 064513 (2008)

    Article  Google Scholar 

  19. E. Meyer, R. Lüthi, L. Howald, M. Bammerlin, M. Guggisberg, H.-J. Güntherodt: Site-specific friction force spectroscopy, J. Vac. Sci. Technol. B 14, 1285–1288 (1996)

    Article  Google Scholar 

  20. S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp, H.W. Zandberger: Calibration and evaluation of scanning-force microscopy probes, Phys. Rev. B 48, 5675 (1993)

    Article  Google Scholar 

  21. F. Atamny, A. Baiker: Direct imaging of the tip shape by AFM, Surf. Sci. 323, L314 (1995)

    Article  Google Scholar 

  22. L. Howald, E. Meyer, R. Lüthi, H. Haefke, R. Overney, H. Rudin, H.-J. Güntherodt: Multifunctional probe microscope for facile operation in ultrahigh vacuum, Appl. Phys. Lett. 63, 117–119 (1993)

    Article  Google Scholar 

  23. J.S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation, J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)

    Article  Google Scholar 

  24. Q. Dai, R. Vollmer, R.W. Carpick, D.F. Ogletree, M. Salmeron: A variable temperature ultrahigh vacuum atomic force microscope, Rev. Sci. Instrum. 66, 5266–5271 (1995)

    Article  Google Scholar 

  25. G.A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7, 905 (1929)

    Google Scholar 

  26. T. Gyalog, M. Bammerlin, R. Lüthi, E. Meyer, H. Thomas: Mechanism of atomic friction, Europhys. Lett. 31, 269–274 (1995)

    Article  Google Scholar 

  27. T. Gyalog, H. Thomas: Friction between atomically flat surfaces, Europhys. Lett. 37, 195–200 (1997)

    Article  Google Scholar 

  28. M. Weiss, F.J. Elmer: Dry friction in the Frenkel–Kontorova–Tomlinson model: Static properties, Phys. Rev. B 53, 7539–7549 (1996)

    Article  Google Scholar 

  29. M.H. Müser: Structural lubricity: Role of dimension and symmetry, Europhys. Lett. 66, 97 (2004)

    Article  Google Scholar 

  30. J.B. Pethica: Comment on “Interatomic forces in scanning tunneling microscopy: Giant corrugations of the graphite surface”, Phys. Rev. Lett. 57, 3235 (1986)

    Article  Google Scholar 

  31. E. Meyer, R.M. Overney, K. Dransfeld, T. Gyalog: Nanoscience, Friction and Rheology on the Nanometer Scale (World Scientific, Singapore 1998)

    Book  Google Scholar 

  32. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer: Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction, Phys. Rev. Lett. 92, 134301 (2004)

    Article  Google Scholar 

  33. A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz, E. Meyer: Atomic-scale control of friction by actuation of nanometer-sized contacts, Science 313, 207–210 (2006)

    Article  Google Scholar 

  34. S. Maier, E. Gnecco, A. Baratoff, R. Bennewitz, E. Meyer: Atomic scale friction modulated by a buried interface, Phys. Rev. B (2008), in press

    Google Scholar 

  35. S. Maier, Y. Sang, T. Filleter, M. Grant, R. Bennewitz, E. Gnecco, E. Meyer: Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B 72, 245418 (2008)

    Article  Google Scholar 

  36. R. Lüthi, E. Meyer, M. Bammerlin, L. Howald, H. Haefke, T. Lehmann, C. Loppacher, H.-J. Güntherodt, T. Gyalog, H. Thomas: Friction on the atomic scale: An ultrahigh vacuum atomic force microscopy study on ionic crystals, J. Vac. Sci. Technol. B 14, 1280–1284 (1996)

    Article  Google Scholar 

  37. G.J. Germann, S.R. Cohen, G. Neubauer, G.M. McClelland, H. Seki: Atomic-scale friction of a diamond tip on diamond (100) and (111) surfaces, J. Appl. Phys. 73, 163–167 (1993)

    Article  Google Scholar 

  38. R.J.A. van den Oetelaar, C.F.J. Flipse: Atomic-scale friction on diamond(111) studied by ultrahigh vacuum atomic force microscopy, Surf. Sci. 384, L828–L835 (1997)

    Article  Google Scholar 

  39. L. Howald, R. Lüthi, E. Meyer, H.-J. Güntherodt: Atomic-force microscopy on the Si(111)7 × 7 surface, Phys. Rev. B 51, 5484–5487 (1995)

    Article  Google Scholar 

  40. R. Bennewitz, E. Gnecco, T. Gyalog, E. Meyer: Atomic friction studies on well-defined surfaces, Tribol. Lett. 10, 51–56 (2001)

    Article  Google Scholar 

  41. T. Filleter, W. Paul, R. Bennewitz: Atomic structure and friction of ultrathin films of KBr on Cu(100), Phys. Rev. B 77, 035430 (2008)

    Article  Google Scholar 

  42. S. Fujisawa, E. Kishi, Y. Sugawara, S. Morita: Atomic-scale friction observed with a two-dimensional frictional-force microscope, Phys. Rev. B 51, 7849–7857 (1995)

    Article  Google Scholar 

  43. N. Sasaki, M. Kobayashi, M. Tsukada: Atomic-scale friction image of graphite in atomic-force microscopy, Phys. Rev. B 54, 2138–2149 (1996)

    Article  Google Scholar 

  44. H. Kawakatsu, T. Saito: Scanning force microscopy with two optical levers for detection of deformations of the cantilever, J. Vac. Sci. Technol. B 14, 872–876 (1996)

    Article  Google Scholar 

  45. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata: Anisotropy of frictional forces in muscovite mica, Phys. Rev. Lett. 67, 2642–2645 (1991)

    Article  Google Scholar 

  46. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata: Observation of superlubricity by scanning tunneling microscopy, Phys. Rev. Lett. 78, 1448–1451 (1997)

    Article  Google Scholar 

  47. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Anisotropy in friction and molecular stick-slip motion, Phys. Rev. Lett. 72, 3546–3549 (1994)

    Article  Google Scholar 

  48. H. Takano, M. Fujihira: Study of molecular scale friction on stearic acid crystals by friction force microscopy, J. Vac. Sci. Technol. B 14, 1272–1275 (1996)

    Article  Google Scholar 

  49. M. Dienwiebel, G. Verhoeven, N. Pradeep, J. Frenken, J. Heimberg, H. Zandbergen: Superlubricity of graphite, Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  50. M. Liley, D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham, C. Duschl: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt, Science 280, 273–275 (1998)

    Article  Google Scholar 

  51. R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, H.-J. Güntherodt: Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C_60, Science 266, 1979–1981 (1994)

    Article  Google Scholar 

  52. P.E. Sheehan, C.M. Lieber: Nanotribology and nanofabrication of MoO_3 structures by atomic force microscopy, Science 272, 1158–1161 (1996)

    Article  Google Scholar 

  53. M.R. Falvo, J. Steele, R.M. Taylor, R. Superfine: Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG, Tribol. Lett. 9, 73–76 (2000)

    Article  Google Scholar 

  54. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  Google Scholar 

  55. Y. Sang, M. Dubé, M. Grant: Thermal effects on atomic friction, Phys. Rev. Lett. 87, 174301 (2001)

    Article  Google Scholar 

  56. E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, H. Brune: Interaction potential and hopping dynamics governing sliding friction, Phys. Rev. Lett. 91, 084502 (2003)

    Article  Google Scholar 

  57. P. Reimann, M. Evstigneev: Nonmonotonic velocity dependence of atomic friction, Phys. Rev. Lett. 93, 230802 (2004)

    Article  Google Scholar 

  58. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model, Phys. Rev. B 71, 45413 (2005)

    Article  Google Scholar 

  59. D. Gourdon, N.A. Burnham, A. Kulik, E. Dupas, F. Oulevey, G. Gremaud, D. Stamou, M. Liley, Z. Dienes, H. Vogel, C. Duschl: The dependence of friction anisotropies on the molecular organization of LB films as observed by AFM, Tribol. Lett. 3, 317–324 (1997)

    Article  Google Scholar 

  60. O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, P. Grütter: Lateral-force measurements in dynamic force microscopy, Phys. Rev. B 65, 161403 (2002)

    Article  Google Scholar 

  61. E. Riedo, F. Lévy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505 (2002)

    Article  Google Scholar 

  62. O. Zwörner, H. Hölscher, U.D. Schwarz, R. Wiesendanger: The velocity dependence of frictional forces in point-contact friction, Appl. Phys. A 66, 263–267 (1998)

    Article  Google Scholar 

  63. T. Bouhacina, J.P. Aimé, S. Gauthier, D. Michel, V. Heroguez: Tribological behavior of a polymer grafted on silanized silica probed with a nanotip, Phys. Rev. B 56, 7694–7703 (1997)

    Article  Google Scholar 

  64. H.J. Eyring: The activated complex in chemical reactions, J. Chem. Phys. 3, 107 (1937)

    Article  Google Scholar 

  65. J.N. Glosli, G.M. McClelland: Molecular dynamics study of sliding friction of ordered organic monolayers, Phys. Rev. Lett. 70, 1960–1963 (1993)

    Article  Google Scholar 

  66. M. He, A.S. Blum, G. Overney, R.M. Overney: Effect of interfacial liquid structuring on the coherence length in nanolubrucation, Phys. Rev. Lett. 88, 154302 (2002)

    Article  Google Scholar 

  67. R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Atomic-scale stick-slip processes on Cu(111), Phys. Rev. B 60, R11301–R11304 (1999)

    Article  Google Scholar 

  68. A. Schirmeisen, L. Jansen, H. Hölscher, H. Fuchs: Temperature dependence of point contact friction on silicon, Appl. Phys. Lett. 88, 123108 (2006)

    Article  Google Scholar 

  69. X. Zhao, M. Hamilton, W.G. Sawyer, S.S. Perry: Thermally activated friction, Tribol. Lett. 27, 113–117 (2007)

    Article  Google Scholar 

  70. F.P. Bowden, F.P. Tabor: The Friction and Lubrication of Solids (Oxford Univ. Press, Oxford 1950)

    Google Scholar 

  71. L.D. Landau, E.M. Lifshitz: Introduction to Theoretical Physics (Nauka, Moscow 1998), Vol. 7

    Google Scholar 

  72. J.A. Greenwood, J.B.P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300 (1966)

    Article  Google Scholar 

  73. B.N.J. Persson: Elastoplastic contact between randomly rough surfaces, Phys. Rev. Lett. 87, 116101 (2001)

    Article  Google Scholar 

  74. K.L. Johnson, K. Kendall, A.D. Roberts: Surface energy and contact of elastic solids, Proc. R. Soc. Lond. A 324, 301 (1971)

    Article  Google Scholar 

  75. B.V. Derjaguin, V.M. Muller, Y.P. Toporov: Effect of contact deformations on adhesion of particles, J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  76. D. Tabor: Surface forces and surface interactions, J. Colloid Interface Sci. 58, 2–13 (1977)

    Article  Google Scholar 

  77. D. Maugis: Adhesion of spheres: the JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  Google Scholar 

  78. U.D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Quantitative analysis of the frictional properties of solid materials at low loads, Phys. Rev. B 56, 6987–6996 (1997)

    Article  Google Scholar 

  79. R.W. Carpick, N. Agraït, D.F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vac. Sci. Technol. B 14, 1289–1295 (1996)

    Article  Google Scholar 

  80. C. Polaczyk, T. Schneider, J. Schöfer, E. Santner: Microtribological behavior of Au(001) studied by AFM/FFM, Surf. Sci. 402, 454–458 (1998)

    Article  Google Scholar 

  81. J.N. Israelachvili, D. Tabor: Measurement of van der Waals dispersion forces in range 1.5 to 130 nm, Proc. R. Soc. Lond. A 331, 19 (1972)

    Article  Google Scholar 

  82. S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica: A novel force microscope and point-contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)

    Article  Google Scholar 

  83. R.W. Carpick, D.F. Ogletree, M. Salmeron: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550 (1997)

    Article  Google Scholar 

  84. M.A. Lantz, S.J. OʼShea, M.E. Welland, K.L. Johnson: Atomic-force-microscope study of contact area and friction on NbSe_2, Phys. Rev. B 55, 10776–10785 (1997)

    Article  Google Scholar 

  85. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)

    Book  MATH  Google Scholar 

  86. M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron: Atomic force microscopy study of an ideally hard contact: the diamond(111)/tungsten carbide interface, Phys. Rev. Lett. 81, 1877–1880 (1998)

    Article  Google Scholar 

  87. M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron: Observation of proportionality between friction and contact area at the nanometer scale, Tribol. Lett. 7, 73–78 (1999)

    Article  Google Scholar 

  88. E. Gnecco, R. Bennewitz, E. Meyer: Abrasive wear on the atomic scale, Phys. Rev. Lett. 88, 215501 (2002)

    Article  Google Scholar 

  89. S. Kopta, M. Salmeron: The atomic scale origin of wear on mica and its contribution to friction, J. Chem. Phys. 113, 8249–8252 (2000)

    Article  Google Scholar 

  90. H. Tang, C. Joachim, J. Devillers: Interpretation of AFM images – the graphite surface with a diamond tip, Surf. Sci. 291, 439–450 (1993)

    Article  Google Scholar 

  91. U. Landman, W.D. Luedtke, E.M. Ringer: Atomistic mechanisms of adhesive contact formation and interfacial processes, Wear 153, 3–30 (1992)

    Article  Google Scholar 

  92. A.I. Livshits, A.L. Shluger: Self-lubrication in scanning force microscope image formation on ionic surfaces, Phys. Rev. B 56, 12482–12489 (1997)

    Article  Google Scholar 

  93. H. Tang, X. Bouju, C. Joachim, C. Girard, J. Devillers: Theoretical study of the atomic-force microscopy imaging process on the NaCl(100) surface, J. Chem. Phys. 108, 359–367 (1998)

    Article  Google Scholar 

  94. R. Bennewitz, A.S. Foster, L.N. Kantorovich, M. Bammerlin, C. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A.L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Phys. Rev. B 62, 2074–2084 (2000)

    Article  Google Scholar 

  95. M.R. Sørensen, K.W. Jacobsen, P. Stoltze: Simulations of atomic-scale sliding friction, Phys. Rev. B 53, 2101–2113 (1996)

    Article  Google Scholar 

  96. U. Landman, W.D. Luetke, M.W. Ribarsky: Structural and dynamical consequences of interactions in interfacial systems, J. Vac. Sci. Technol. A 7, 2829–2839 (1989)

    Article  Google Scholar 

  97. R. Komanduri, N. Chandrasekaran, L.M. Raff: Molecular dynamics simulation of atomic-scale friction, Phys. Rev. B 61, 14007–14019 (2000)

    Article  Google Scholar 

  98. A. Buldum, C. Ciraci: Contact, nanoindentation and sliding friction, Phys. Rev. B 57, 2468–2476 (1998)

    Article  Google Scholar 

  99. T.H. Fang, C.I. Weng, J.G. Chang: Molecular dynamics simulation of a nanolithography process using atomic force microscopy, Surf. Sci. 501, 138–147 (2002)

    Article  Google Scholar 

  100. B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs: Conservative and dissipative tip–sample interaction forces probed with dynamic AFM, Phys. Rev. B 60, 11051–11061 (1999)

    Article  Google Scholar 

  101. C. Loppacher, R. Bennewitz, O. Pfeiffer, M. Guggisberg, M. Bammerlin, S. Schär, V. Barwich, A. Baratoff, E. Meyer: Experimental aspects of dissipation force microscopy, Phys. Rev. B 62, 13674–13679 (2000)

    Article  Google Scholar 

  102. M. Gauthier, M. Tsukada: Theory of noncontact dissipation force microscopy, Phys. Rev. B 60, 11716–11722 (1999)

    Article  Google Scholar 

  103. J.P. Aimé, R. Boisgard, L. Nony, G. Couturier: Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale, Phys. Rev. Lett. 82, 3388–3391 (1999)

    Article  Google Scholar 

  104. W. Denk, D.W. Pohl: Local electrical dissipation imaged by scanning force microscopy, Appl. Phys. Lett. 59, 2171–2173 (1991)

    Article  Google Scholar 

  105. S. Hirsekorn, U. Rabe, A. Boub, W. Arnold: On the contrast in eddy current microscopy using atomic force microscopes, Surf. Interf. Anal. 27, 474–481 (1999)

    Article  Google Scholar 

  106. U. Dürig: Atomic-Scale Metal Adhesion. In: Forces in Scanning Probe Methods, NATO ASI Ser. E, Vol. 286, ed. by H.J. Güntherodt, D. Anselmetti, E. Meyer (Kluwer, Dordrecht 1995) pp. 191–234

    Chapter  Google Scholar 

  107. N. Sasaki, M. Tsukada: Effect of microscopic nonconservative process on noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39, L1334–L1337 (2000)

    Article  Google Scholar 

  108. B. Gotsmann, H. Fuchs: The measurement of hysteretic forces by dynamic AFM, Appl. Phys. A 72, 55–58 (2001)

    Article  Google Scholar 

  109. M. Guggisberg, M. Bammerlin, A. Baratoff, R. Lüthi, C. Loppacher, F.M. Battiston, J. Lü, R. Bennewitz, E. Meyer, H.J. Güntherodt: Dynamic force microscopy across steps on the Si(111)-(7 × 7) surface, Surf. Sci. 461, 255–265 (2000)

    Article  Google Scholar 

  110. R. Bennewitz, S. Schär, V. Barwich, O. Pfeiffer, E. Meyer, F. Krok, B. Such, J. Kolodzej, M. Szymonski: Atomic-resolution images of radiation damage in KBr, Surf. Sci. 474, 197–202 (2001)

    Article  Google Scholar 

  111. T.D. Stowe, T.W. Kenny, J. Thomson, D. Rugar: Silicon dopant imaging by dissipation force microscopy, Appl. Phys. Lett. 75, 2785–2787 (1999)

    Article  Google Scholar 

  112. B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, D. Rugar: Noncontact friction and force fluctuations between closely spaced bodies, Phys. Rev. Lett. 87, 96801 (2001)

    Article  Google Scholar 

  113. B. Gotsmann, H. Fuchs: Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip–sample system, Phys. Rev. Lett. 86, 2597–2600 (2001)

    Article  Google Scholar 

  114. B.N.J. Persson, A.I. Volokitin: Comment on “Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields”, Phys. Rev. Lett. 84, 3504 (2000)

    Article  Google Scholar 

  115. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto: Quantitative material characterization by ultrasonic AFM, Surf. Interface Anal. 27, 600–606 (1999)

    Article  Google Scholar 

  116. T. Drobek, R.W. Stark, W.M. Heckl: Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: Passive overtone microscopy, Phys. Rev. B 64, 045401 (2001)

    Article  Google Scholar 

  117. T. Kawagishi, A. Kato, Y. Hoshi, H. Kawakatsu: Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever, Ultramicroscopy 91, 37–48 (2002)

    Article  Google Scholar 

  118. F.J. Giessibl, M. Herz, J. Mannhart: Friction traced to the single atom, Proc. Natl. Acad. Sci. USA 99, 12006–12010 (2002)

    Article  Google Scholar 

  119. H.-J. Hug, A. Baratoff: Measurement of dissipation induced by tip–sample interactions. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin Heidelberg 2002) p. 395

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrico Gnecco , Roland Bennewitz , Oliver Pfeiffer , Anisoara Socoliuc or Ernst Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Gnecco, E., Bennewitz, R., Pfeiffer, O., Socoliuc, A., Meyer, E. (2010). Friction and Wear on the Atomic Scale. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics