Skip to main content
Log in

Origin and structures of solar eruptions II: Magnetic modeling

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai G X. 1987. Solar magnetic field telescope. Publ Beijing Astronomical Observatory, 9: 27–36

    Google Scholar 

  • Altschuler M D, Levine R H, Stix M, Harvey J. 1977. High resolution mapping of the magnetic field of the solar corona. Sol Phys, 51: 345–375

    Article  Google Scholar 

  • Altschuler M D, Newkirk Jr. G. 1969. Magnetic fields and the structure of the solar corona. Sol Phys, 9: 131–149

    Article  Google Scholar 

  • Aly J J. 1989. On the reconstruction of the nonlinear force-free coronal magnetic field from boundary data. Sol Phys, 120: 19–48

    Article  Google Scholar 

  • Amari T, Aly J J, Luciani J F, Boulmezaoud T Z, Mikic Z. 1997. Reconstructing the solar coronal magnetic field as a force-free magnetic field. Sol Phys, 174: 129–149

    Article  Google Scholar 

  • Amari T, Boulmezaoud T Z, Aly J J. 2006. Well posed reconstruction of the solar coronal magnetic field. Astron Astrophys, 446: 691–705

    Article  Google Scholar 

  • Amari T, Canou A, Aly J J. 2014. Characterizing and predicting the magnetic environment leading to solar eruptions. Nature, 514: 465–469

    Article  Google Scholar 

  • Amari T, Luciani J F, Aly J J, Tagger M. 1996. Very fast opening of a threedimensional twisted magnetic flux tube. Astrophys J, 466: L39–L42

    Article  Google Scholar 

  • Amari T, Luciani J F, Mikic Z, Linker J. 2000. A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys J, 529: L49–L52

    Article  Google Scholar 

  • Antiochos S K. 1998. The magnetic topology of solar eruptions. Astrophys J, 502: L181–L184

    Article  Google Scholar 

  • Antiochos S K. 2013. Helicity condensation as the origin of coronal and solar wind structure. Astrophys J, 772: 72

    Article  Google Scholar 

  • Antiochos S K, DeVore C R, Klimchuk J A. 1999. A model for solar coronal mass ejections. Astrophys J, 510: 485–493

    Article  Google Scholar 

  • Archontis V, Hood A W, Savcheva A, Golub L, Deluca E. 2009. On the structure and evolution of complexity in sigmoids: A flux emergence model. Astrophys J, 691: 1276–1291

    Article  Google Scholar 

  • Archontis V, Moreno-Insertis F, Galsgaard K, Hood A, O’Shea E. 2004. Emergence of magnetic flux from the convection zone into the corona. Astron Astrophys, 426: 1047–1063

    Article  Google Scholar 

  • Archontis V, Török T. 2008. Eruption of magnetic flux ropes during flux emergence. Astron Astrophys, 492: L35–L38

    Article  Google Scholar 

  • Asensio Ramos A, Trujillo Bueno J, Landi Degl’Innocenti E. 2008. Advanced forward modeling and inversion of Stokes profiles resulting from the joint action of the hanle and zeeman effects. Astrophys J, 683: 542–565

    Article  Google Scholar 

  • Aulanier G, Démoulin P. 1998. 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron Astrophys, 329: 1125–1137

    Google Scholar 

  • Aulanier G, Démoulin P, Schrijver C J, Janvier M, Pariat E, Schmieder B. 2013. The standard flare model in three dimensions. II. Upper limit on solar flare energy. Astron Astrophys, 549: A66

    Article  Google Scholar 

  • Aulanier G, Démoulin P, van Driel-Gesztelyi L, Mein P, Deforest C. 1998. 3-D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted flux-tube. Astron Astrophys, 335: 309–322

    Google Scholar 

  • Aulanier G, Janvier M, Schmieder B. 2012. The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron Astrophys, 543: A110

    Article  Google Scholar 

  • Aulanier G, Pariat E, Démoulin P, Devore C R. 2006. Slip-running reconnection in quasi-separatrix layers. Sol Phys, 238: 347–376

    Article  Google Scholar 

  • Aulanier G, Török T, Démoulin P, DeLuca E E. 2010. Formation of torusunstable flux ropes and electric currents in erupting sigmoids. Astrophys J, 708: 314–333

    Article  Google Scholar 

  • Bao S, Zhang H. 1998. Patterns of current helicity for Solar Cycle 22. Astrophys J, 496: L43–L46

    Article  Google Scholar 

  • Bateman G. 1978. MHD Instabilities. Cambridge, MA: MIT Press

    Google Scholar 

  • Berger M A. 1984. Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys Astrophys Fluid Dyn, 30: 79–104

    Article  Google Scholar 

  • Berger M A, Field G B. 1984. The topological properties of magnetic helicity. J Fluid Mech, 147: 133–148

    Article  Google Scholar 

  • Berger M A, Prior C. 2006. The writhe of open and closed curves. J Phys A-Math Gen, 39: 8321–8348

    Article  Google Scholar 

  • Berger T E, Shine R A, Slater G L, Tarbell T D, Title A M, Okamoto T J, Ichimoto K, Katsukawa Y, Suematsu Y, Tsuneta S, Lites B W, Shimizu T. 2008. Hinode SOT observations of solar quiescent prominence dynamics. Astrophys J, 676: L89–L92

    Article  Google Scholar 

  • Berger T E, Slater G, Hurlburt N, Shine R, Tarbell T, Title A, Lites B W, Okamoto T J, Ichimoto K, Katsukawa Y, Magara T, Suematsu Y, Shimizu T. 2010. Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. Astrophys J, 716: 1288–1307

    Article  Google Scholar 

  • Bogdan T J, Low B C. 1986. The three-dimensional structure of magnetostatic atmospheres. II - Modeling the large-scale corona. Astrophys J, 306: 271–283

    Article  Google Scholar 

  • Bommier V. 2013. Reconciliating the vertical and horizontal gradients of the sunspot magnetic field. Phys Res Int, 2013: 1–16

    Article  Google Scholar 

  • Bommier V, Landi Degl’Innocenti E, Landolfi M, Molodij G. 2007. UNNOFIT inversion of spectro-polarimetric maps observed with THEMIS. Astron Astrophys, 464: 323–339

    Article  Google Scholar 

  • Borrero J M, Tomczyk S, Kubo M, Socas-Navarro H, Schou J, Couvidat S, Bogart R. 2011. VFISV: Very fast inversion of the Stokes vector for the helioseismic and magnetic imager. Sol Phys, 273: 267–293

    Article  Google Scholar 

  • Brandenburg A, Subramanian K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Phys Rep, 417: 1–209

    Article  Google Scholar 

  • Bungey T N, Titov V S, Priest E R. 1996. Basic topological elements of coronal magnetic fields. Astron Astrophys, 308: 233–247

    Google Scholar 

  • Calabretta M R, Greisen E W. 2002. Representations of celestial coordinates in FITS. Astron Astrophys, 395: 1077–1122

    Article  Google Scholar 

  • Canfield R C, de La Beaujardiere J F, Fan Y, Leka K D, McClymont A N, Metcalf T R, Mickey D L, Wuelser J P, Lites B W. 1993. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. I - Introduction and methods. Astrophys J, 411: 362–369

    Article  Google Scholar 

  • Canou A, Amari T. 2010. A twisted flux rope as the magnetic structure of a filament in active region 10953 observed by Hinode. Astrophys J, 715: 1566–1574

    Article  Google Scholar 

  • Canou A, Amari T, Bommier V, Schmieder B, Aulanier G, Li H. 2009. Evidence for a pre-eruptive twisted flux rope using the themis vector magnetograph. Astrophys J, 693: L27–L30

    Article  Google Scholar 

  • Cao W, Gorceix N, Coulter R, Ahn K, Rimmele T R, Goode P R. 2010. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron Nachr, 331: 636–639

    Article  Google Scholar 

  • Centeno R, Schou J, Hayashi K, Norton A, Hoeksema J T, Liu Y, Leka K D, Barnes G. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Optimization of the spectral line inversion code. Sol Phys, 289: 3531–3547

    Article  Google Scholar 

  • Chae J. 2001. Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys J, 560: L95–L98

    Article  Google Scholar 

  • Chandra R, Pariat E, Schmieder B, Mandrini C H, Uddin W. 2010. How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Sol Phys, 261: 127–148

    Article  Google Scholar 

  • Chandrasekhar S, Kendall P C. 1957. On force-free magnetic fields. Astrophys J, 126: 457

    Article  Google Scholar 

  • Chen F, Rempel M, Fan Y. 2017. Emergence of magnetic flux generated in a solar convective dynamo. I: Formation of Sunspots and Active regions, and Origin of Their Asymmetries. ArXiv e-prints

    Google Scholar 

  • Chen P F, Harra L K, Fang C. 2014. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counterstreamings. Astrophys J, 784: 50

    Article  Google Scholar 

  • Chen P F, Su J T, Guo Y, Deng Y Y. 2012. Where do flare ribbons stop? Chin Sci Bull, 57: 1393–1396

    Article  Google Scholar 

  • Cheng X, Ding M D. 2016. The characteristics of the footpoints of solar magnetic flux ropes during eruptions. Astrophys J Suppl Ser, 225: 16

    Article  Google Scholar 

  • Cheng X, Ding M D, Guo Y, Zhang J, Jing J, Wiegelmann T. 2010. Re-flaring of a post-flare loop system driven by flux rope emergence and twisting. Astrophys J, 716: L68–L73

    Article  Google Scholar 

  • Cheng X, Guo Y, Ding M D. 2017. Origin and structures of solar eruptions I: Multi-wavelength observations. Sci China Earth Sci, 60, doi: 10.1007/s11430-017-9074-6

  • Cheung M C M, Schüssler M, Tarbell T D, Title A M. 2008. Solar surface emerging flux regions: A comparative study of radiative mhd modeling and Hinode SOT observations. Astrophys J, 687: 1373–1387

    Article  Google Scholar 

  • Chiu Y T, Hilton H H. 1977. Exact Green’s function method of solar forcefree magnetic-field computations with constant alpha. I - Theory and basic test cases. Astrophys J, 212: 873–885

    Article  Google Scholar 

  • Chodura R, Schlueter A. 1981. A 3D code for MHD equilibrium and stability. J Comp Phys, 41: 68–88

    Article  Google Scholar 

  • Courant R, Hilbert D. 1962. Methods of Mathematical Physics, Vol. 2. New York: Interscience Publishers

  • Crouch A D, Barnes G, Leka K D. 2009. Resolving the azimuthal ambiguity in vector magnetogram data with the divergence-free condition: Application to discrete data. Sol Phys, 260: 271–287

    Article  Google Scholar 

  • Cuperman S, Li J, Semel M. 1993. Alternative method for the removal of the 180° ambiguity in the sign of the observed transverse photospheric magnetic field. Astron Astrophys, 268: 749–764

    Google Scholar 

  • Cuperman S, Ofman L, Semel M. 1990. Determination of force-free magnetic fields above the photosphere using three-component boundary conditions? Moderately non-linear case. Astron Astrophys, 230: 193–199

    Google Scholar 

  • Dai Y, Ding M D, Guo Y. 2013. Production of the extreme-ultraviolet late phase of an X class flare in a three-stage magnetic reconnection process. Astrophys J, 773: L21

    Article  Google Scholar 

  • Dalmasse K, Pariat E, Démoulin P, Aulanier G. 2014. Photospheric injection of magnetic helicity: Connectivity-based flux density method. Sol Phys, 289: 107–136

    Article  Google Scholar 

  • Dalmasse K, Pariat E, Valori G, Démoulin P, Green L M. 2013. First observational application of a connectivity-based helicity flux density. Astron Astrophys, 555: L6

    Article  Google Scholar 

  • de la Cruz Rodríguez J, Rouppe van der Voort L, Socas-Navarro H, van Noort M. 2013. Physical properties of a sunspot chromosphere with umbral flashes. Astron Astrophys, 556: A115

    Article  Google Scholar 

  • de la Cruz Rodríguez J, van Noort M. 2016. Radiative diagnostics in the solar photosphere and chromosphere. Space Sci Rev, 489: 1–35

    Google Scholar 

  • Démoulin P, Aulanier G. 2010. Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys J, 718: 1388–1399

    Article  Google Scholar 

  • Démoulin P, Berger M A. 2003. Magnetic energy and helicity fluxes at the photospheric level. Sol Phys, 215: 203–215

    Article  Google Scholar 

  • Démoulin P, Cuperman S, Semel M. 1992. Determination of force-free magnetic fields above the photosphere using three-component boundary conditions. II. Analysis and minimization of scale-related growing modes and of computational induced singularities. Astron Astrophys, 263: 351–360

    Google Scholar 

  • Démoulin P, Hénoux J C, Mandrini C H. 1992. Development of a topological model for solar flares. Sol Phys, 139: 105–123

    Article  Google Scholar 

  • Démoulin P, Hénoux J C, Priest E R, Mandrini C H. 1996. Quasi-Separatrix layers in solar flares. I. Method. Astron Astrophys, 308: 643–655

    Google Scholar 

  • Démoulin P, Pariat E, Berger M A. 2006. Basic properties of mutual magnetic helicity. Sol Phys, 233: 3–27

    Article  Google Scholar 

  • Démoulin P, Priest E R. 1988. Instability of a prominence supported in a linear force-free field. Astron Astrophys, 206: 336–347

    Google Scholar 

  • Démoulin P, Priest E R. 1992. The properties of sources and sinks of a linear force-free field. Astron Astrophys, 258: 535–541

    Google Scholar 

  • DeVore C R. 2000. Magnetic helicity generation by solar differential rotation. Astrophys J, 539: 944–953

    Article  Google Scholar 

  • Dudík J, Aulanier G, Schmieder B, Zapiór M, Heinzel P. 2012. Magnetic topology of bubbles in quiescent prominences. Astrophys J, 761: 9

    Article  Google Scholar 

  • Fan Y. 2001. The emergence of a twisted O-tube into the solar atmosphere. Astrophys J, 554: L111–L114

    Article  Google Scholar 

  • Fan Y. 2009a. Magnetic fields in the solar convection zone. Living Rev Sol Phys, 6: 4

    Article  Google Scholar 

  • Fan Y. 2009b. The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys J, 697: 1529–1542

    Article  Google Scholar 

  • Feng X, Ma X, Xiang C. 2015. Data-driven modeling of the solar wind from 1 R s to 1 AU. J Geophys Res Space Phys, 120: 10159–10174

    Article  Google Scholar 

  • Finn J H, Antonsen T M J. 1985. Magnetic helicity: What is it, and what is it good for? Comm Plasma Phys Control Fusion, 9: 111

    Google Scholar 

  • Forbes T G, Isenberg P A. 1991. A catastrophe mechanism for coronal mass ejections. Astrophys J, 373: 294–307

    Article  Google Scholar 

  • Fuhrmann M, Seehafer N, Valori G. 2007. Preprocessing of solar vector magnetograms for force-free magnetic field extrapolation. Astron Astrophys, 476: 349–357

    Article  Google Scholar 

  • Fuhrmann M, Seehafer N, Valori G, Wiegelmann T. 2011. A comparison of preprocessing methods for solar force-free magnetic field extrapolation. Astron Astrophys, 526: A70

    Article  Google Scholar 

  • Fuller F B. 1978. Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc Natl Acad Sci USA, 75: 3557–3561

    Article  Google Scholar 

  • Galsgaard K, Archontis V, Moreno-Insertis F, Hood A W. 2007. The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties. Astrophys J, 666: 516–531

    Article  Google Scholar 

  • Gary G A. 2001. Plasma beta above a solar active region: Rethinking the paradigm. Sol Phys, 203: 71–86

    Article  Google Scholar 

  • Gary G A, Démoulin P. 1995. Reduction, analysis, and properties of electric current systems in solar active regions. Astrophys J, 445: 982–998

    Article  Google Scholar 

  • Gary G A, Hagyard M J. 1990. Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Sol Phys, 126: 21–36

    Article  Google Scholar 

  • Georgoulis M K. 2005. A new technique for a routine azimuth disambiguation of solar vector magnetograms. Astrophys J, 629: L69–L72

    Article  Google Scholar 

  • Georgoulis M K, LaBonte B J. 2006. Reconstruction of an inductive velocity field vector from doppler motions and a pair of solar vector magnetograms. Astrophys J, 636: 475–495

    Article  Google Scholar 

  • Georgoulis M K, LaBonte B J. 2007. Magnetic energy and helicity budgets in the active region solar corona. I. Linear force-free approximation. Astrophys J, 671: 1034–1050

    Article  Google Scholar 

  • Georgoulis M K, LaBonte B J, Metcalf T R. 2004. On the resolution of the azimuthal ambiguity in vector magnetograms of solar active regions. Astrophys J, 602: 446–467

    Article  Google Scholar 

  • Georgoulis M K, Tziotziou K, Raouafi N E. 2012. Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys J, 759: 1

    Article  Google Scholar 

  • Gilchrist S A, Wheatland M S. 2013. A magnetostatic Grad-Rubin Code for coronal magnetic field extrapolations. Sol Phys, 282: 283–302

    Article  Google Scholar 

  • Gilchrist S A, Wheatland M S. 2014. Nonlinear force-free modeling of the corona in spherical coordinates. Sol Phys, 289: 1153–1171

    Article  Google Scholar 

  • Gold T, Hoyle F. 1960. On the origin of solar flares. Mon Not R Astron Soc, 120: 89–105

    Article  Google Scholar 

  • Gorbachev V S, Somov B V. 1988. Photospheric vortex flows as a cause for two-ribbon flares: A topological model. Sol Phys, 117: 77–88

    Article  Google Scholar 

  • Grad H, Rubin H. 1958. Hydromagnetic equilibria and force-free fields. In: the 2nd International Conference on Peaceful Uses of Atomic Energy. Geneva: International Atomic Energy Agency

    Google Scholar 

  • Greene J M. 1992. Locating three-dimensional roots by a bisection method. J Comp Phys, 98: 194–198

    Article  Google Scholar 

  • Guo Y, Démoulin P, Schmieder B, Ding M D, Vargas Domínguez S, Liu Y. 2013a. Recurrent coronal jets induced by repetitively accumulated electric currents. Astron Astrophys, 555: A19

    Article  Google Scholar 

  • Guo Y, Ding M D, Cheng X, Zhao J, Pariat E. 2013b. Twist accumulation and topology structure of a solar magnetic flux rope. Astrophys J, 779: 157

    Article  Google Scholar 

  • Guo Y, Ding M D, Liu Y, Sun X D, DeRosa M L, Wiegelmann T. 2012a. Modeling magnetic field structure of a solar active region corona using nonlinear force-free fields in spherical geometry. Astrophys J, 760: 47

    Article  Google Scholar 

  • Guo Y, Ding M D, Schmieder B, Démoulin P, Li H. 2012b. Evolution of hard X-ray sources and ultraviolet solar flare ribbons for a confined eruption of a magnetic flux rope. Astrophys J, 746: 17

    Article  Google Scholar 

  • Guo Y, Ding M D, Schmieder B, Li H, Török T, Wiegelmann T. 2010a. Driving mechanism and onset condition of a confined eruption. Astrophys J, 725: L38–L42

    Article  Google Scholar 

  • Guo Y, Pariat E, Valori G, Anfinogentov S, Chen F, Georgoulis M K, Liu Y, Moraitis K, Thalmann J K, Yang S. 2017. Magnetic helicity estimations in models and observations of the solar magnetic field. III. Twist number method. Astrophys J, 840: 40

    Article  Google Scholar 

  • Guo Y, Schmieder B, Bommier V, Gosain S. 2010b. Magnetic field structures in a facular region observed by THEMIS and Hinode. Sol Phys, 262: 35–52

    Article  Google Scholar 

  • Guo Y, Schmieder B, Démoulin P, Wiegelmann T, Aulanier G, Török T, Bommier V. 2010c. Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys J, 714: 343–354

    Article  Google Scholar 

  • Guo Y, Xia C, Keppens R. 2016a. Magneto-frictional modeling of coronal nonlinear force-free fields. II. Application to observations. Astrophys J, 828: 83

    Article  Google Scholar 

  • Guo Y, Xia C, Keppens R, Valori G. 2016b. Magneto-frictional modeling of coronal nonlinear force-free fields. I. Testing with analytic solutions. Astrophys J, 828: 82

    Article  Google Scholar 

  • Hagino M, Sakurai T. 2002. Hemispheric helicity asymmetry in active regions for Solar Cycle 21-23. In: Martens P C H, Cauffman D, eds. Multi-Wavelength Observations of Coronal Structure and Dynamics. 147

    Chapter  Google Scholar 

  • Hagino M, Sakurai T. 2004. Latitude variation of helicity in solar active regions. Publ Astron Soc Jpn, 56: 831–843

    Article  Google Scholar 

  • Hale G E. 1908. On the probable existence of a magnetic field in Sun-spots. Astrophys J, 28: 315

    Article  Google Scholar 

  • Haynes A L, Parnell C E. 2007. A trilinear method for finding null points in a three-dimensional vector space. Phys Plasmas, 14: 082107–082107

    Article  Google Scholar 

  • He H, Wang H. 2006. The validity of the boundary integral equation for magnetic field extrapolation in open space above a spherical surface. Mon Not R Astron Soc, 369: 207–215

    Article  Google Scholar 

  • He H, Wang H. 2008. Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation. J Geophys Res, 113: A05S90

    Google Scholar 

  • Heyvaerts J, Priest E R, Rust D M. 1977. An emerging flux model for the solar flare phenomenon. Astrophys J, 216: 123–137

    Article  Google Scholar 

  • Hillier A, Berger T, Isobe H, Shibata K. 2012. Numerical simulations of the magnetic rayleigh-taylor instability in the kippenhahn-schlüter prominence model. I. Formation of upflows. Astrophys J, 746: 120

    Article  Google Scholar 

  • Hillier A, Isobe H, Shibata K, Berger T. 2011. Numerical simulations of the magnetic rayleigh-taylor instability in the Kippenhahn-Schlüter prominence model. Astrophys J, 736: L1

    Article  Google Scholar 

  • Hillier A, Isobe H, Shibata K, Berger T. 2012b. Numerical simulations of the magnetic rayleigh-taylor instability in the Kippenhahn-Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys J, 756: 110

    Article  Google Scholar 

  • Hock R A, Chamberlin P C, Woods T N, Crotser D, Eparvier F G, Woodraska D L, Woods E C. 2012. Extreme ultraviolet variability experiment (EVE) multiple EUV grating spectrographs (MEGS): Radiometric calibrations and results. Sol Phys, 275: 145–178

    Article  Google Scholar 

  • Hoeksema J T, Liu Y, Hayashi K, Sun X, Schou J, Couvidat S, Norton A, Bobra M, Centeno R, Leka K D, Barnes G, Turmon M. 2014. The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Overview and performance. Sol Phys, 289: 3483–3530

    Article  Google Scholar 

  • Hornig G. 2006. A Universal Magnetic Helicity Integral. ArXiv Astrophysics e-prints

    Google Scholar 

  • Hu Q, Dasgupta B. 2008. An improved approach to non-force-free coronal magnetic field extrapolation. Sol Phys, 247: 87–101

    Article  Google Scholar 

  • Hu Q, Dasgupta B, Choudhary D P, Büchner J. 2008. A practical approach to coronal magnetic field extrapolation based on the principle of minimum dissipation rate. Astrophys J, 679: 848–853

    Article  Google Scholar 

  • Ichimoto K, Lites B, Elmore D, Suematsu Y, Tsuneta S, Katsukawa Y, Shimizu T, Shine R, Tarbell T, Title A, Kiyohara J, Shinoda K, Card G, Lecinski A, Streander K, Nakagiri M, Miyashita M, Noguchi M, Hoffmann C, Cruz T. 2008. Polarization calibration of the solar optical telescope onboard Hinode. Sol Phys, 249: 233–261

    Article  Google Scholar 

  • Inhester B, Wiegelmann T. 2006. Nonlinear force-free magnetic field extrapolations: Comparison of the grad rubin and wheatland sturrock roumeliotis algorithm. Sol Phys, 235: 201–221

    Article  Google Scholar 

  • Inoue S. 2016. Magnetohydrodynamics modeling of coronal magnetic field and solar eruptions based on the photospheric magnetic field. Prog Earth Planet Sci, 3: 19

    Article  Google Scholar 

  • Inoue S, Hayashi K, Magara T, Choe G S, Park Y D. 2014. Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. I. Comparison with the observations. Astrophys J, 788: 182

    Article  Google Scholar 

  • Inoue S, Hayashi K, Magara T, Choe G S, Park Y D. 2015. Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. II. Dynamics connecting the solar flare and the coronal mass ejection. Astrophys J, 803: 73

    Article  Google Scholar 

  • Inoue S, Kusano K, Magara T, Shiota D, Yamamoto T T. 2011. Twist and connectivity of magnetic field lines in the solar active region NOA. 10930. Astrophys J, 738: 161

    Article  Google Scholar 

  • Inoue S, Shiota D, Yamamoto T T, Pandey V S, Magara T, Choe G S. 2012. Buildup and release of magnetic twist during the X3.4 solar flare o. 2006 December 13. Astrophys J, 760: 17

    Article  Google Scholar 

  • Janvier M, Aulanier G, Démoulin P. 2015. From coronal observations to MHD simulations, the building blocks for 3D models of solar flares. Sol Phys, 290: 3425–3456

    Article  Google Scholar 

  • Janvier M, Aulanier G, Pariat E, Démoulin P. 2013. The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron Astrophys, 555: A77

    Article  Google Scholar 

  • Janvier M, Savcheva A, Pariat E, Tassev S, Millholland S, Bommier V, McCauley P, McKillop S, Dougan F. 2016. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare. Astron Astrophys, 591: A141

    Article  Google Scholar 

  • Jefferies J, Lites B W, Skumanich A. 1989. Transfer of line radiation in a magnetic field. Astrophys J, 343: 920–935

    Article  Google Scholar 

  • Jensen T H, Chu M S. 1984. Current drive and helicity injection. Phys Fluids, 27: 2881–2885

    Article  Google Scholar 

  • Jiang C, Feng X. 2012a. A new implementation of the magnetohydrodynamics- relaxation method for nonlinear force-free field extrapolation in the solar corona. Astrophys J, 749: 135

    Article  Google Scholar 

  • Jiang C, Feng X. 2012b. A unified and very fast way for computing the global potential and linear force-free fields. Sol Phys, 281: 621–637

    Article  Google Scholar 

  • Jiang C, Feng X. 2013. Extrapolation of the solar coronal magnetic field from SDO /HMI magnetogram by a cese-mhd-nlfff code. Astrophys J, 769: 144

    Article  Google Scholar 

  • Jiang C, Feng X. 2014. Preprocessing the photospheric vector magnetograms for an nlfff extrapolation using a potential-field model and an optimization method. Sol Phys, 289: 63–77

    Article  Google Scholar 

  • Jiang C, Feng X, Fan Y, Xiang C. 2011. Reconstruction of the coronal magnetic field using the CESE-MHD method. Astrophys J, 727: 101

    Article  Google Scholar 

  • Jiang C, Feng X, Wu S T, Hu Q. 2013. Magnetohydrodynamic simulation of a sigmoid eruption of active region 11283. Astrophys J, 771: L30

    Article  Google Scholar 

  • Jiang C, Feng X, Xiang C. 2012. A new code for nonlinear force-free field extrapolation of the global corona. Astrophys J, 755: 62

    Article  Google Scholar 

  • Jiang C, Feng X, Zhang J, Zhong D. 2010. AMR simulations of magnetohydrodynamic problems by the CESE Method in curvilinear coordinates. Sol Phys, 267: 463–491

    Article  Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2014. Nonlinear force-free field extrapolation of a coronal magnetic flux rope supporting a large-scale solar filament from a photospheric vector magnetogram. Astrophys J, 786: L16

    Article  Google Scholar 

  • Jiang C, Wu S T, Feng X, Hu Q. 2016a. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption. Nat Commun, 7: 11522

    Article  Google Scholar 

  • Jiang C, Wu S T, Yurchyshyn V, Wang H, Feng X, Hu Q. 2016b. How did a major confined flare occur in super solar active region 12192? Astrophys J, 828: 62

    Article  Google Scholar 

  • Jin M, Schrijver C J, Cheung M C M, DeRosa M L, Nitta N V, Title A M. 2016. A numerical study of long-range magnetic impacts during coronal mass ejections. Astrophys J, 820: 16

    Article  Google Scholar 

  • Jing J, Park S H, Liu C, Lee J, Wiegelmann T, Xu Y, Deng N, Wang H. 2012. Evolution of relative magnetic helicity and current helicity in NOAA active regio. 11158. Astrophys J, 752: L9

    Article  Google Scholar 

  • Jing J, Yuan Y, Wiegelmann T, Xu Y, Liu R, Wang H. 2010. Nonlinear forcefree modeling of magnetic fields in a solar filament. Astrophys J, 719: L56–L59

    Article  Google Scholar 

  • Keppens R, Meliani Z, van Marle A J, Delmont P, Vlasis A, van der Holst B. 2012. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics. J Comp Phys, 231: 718–744

    Article  Google Scholar 

  • Keppens R, Nool M, Tóth G, Goedbloed J P. 2003. Adaptive Mesh Refinement for conservative systems: Multi-dimensional efficiency evaluation. Comp Phys Commun, 153: 317–339

    Article  Google Scholar 

  • Keppens R, Xia C, Porth O. 2015. Solar prominences: “Double, Double… Boil and Bubble”. Astrophys J, 806: L13

    Article  Google Scholar 

  • Kippenhahn R, Schlüter A. 1957. Eine theorie der solaren filamente. Mit 7 textabbildungen. zeitschrift fur astrophysik, 43: 36

    Google Scholar 

  • Kleman M. 2015. Flux ropes as singularities of the vector potential. Sol Phys, 290: 707–725

    Article  Google Scholar 

  • Kleman M, Robbins J M. 2014. Tubes of magnetic flux and electric current in space physics. Sol Phys, 289: 1173–1192

    Article  Google Scholar 

  • Kliem B, Su Y N, van Ballegooijen A A, DeLuca E E. 2013. Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys J, 779: 129

    Article  Google Scholar 

  • Kliem B, Török T. 2006. Torus instability. Phys Rev Lett, 96: 255002

    Article  Google Scholar 

  • Knizhnik K J, Antiochos S K, DeVore C R. 2015. Filament channel formation via magnetic helicity condensation. Astrophys J, 809: 137

    Article  Google Scholar 

  • Knizhnik K J, Antiochos S K, DeVore C R. 2017. The role of magnetic helicity in structuring the solar corona. Astrophys J, 835: 85

    Article  Google Scholar 

  • Kosugi T, Matsuzaki K, Sakao T, Shimizu T, Sone Y, Tachikawa S, Hashimoto T, Minesugi K, Ohnishi A, Yamada T, Tsuneta S, Hara H, Ichimoto K, Suematsu Y, Shimojo M, Watanabe T, Shimada S, Davis J M, Hill L D, Owens J K, Title A M, Culhane J L, Harra L K, Doschek G A, Golub L. 2007. The Hinode (Solar-B) mission: An overview. Sol Phys, 243: 3–17

    Article  Google Scholar 

  • Kuckein C, Centeno R, Martínez Pillet V, Casini R, Manso Sainz R, Shimizu T. 2009. Magnetic field strength of active region filaments. Astron Astrophys, 501: 1113–1121

    Article  Google Scholar 

  • Kuckein C, Martínez Pillet V, Centeno R. 2012. An active region filament studied simultaneously in the chromosphere and photosphere. Astron Astrophys, 539: A131

    Article  Google Scholar 

  • Kuperus M, Raadu M A. 1974. The support of prominences formed in neutral sheets. Astron Astrophys, 31: 189

    Google Scholar 

  • Kusano K, Maeshiro T, Yokoyama T, Sakurai T. 2002. Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys J, 577: 501–512

    Article  Google Scholar 

  • Lagg A, Ishikawa R, Merenda L, Wiegelmann T, Tsuneta S, Solanki S K. 2009. Internetwork horizontal magnetic fields in the quiet sun chromosphere: Results from a joint Hinode/VTT study. In: Lites B, Cheung M, Magara T, Mariska J, Reeves K, eds. The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding (Astronomical Society of the Pacific Conference Series). 327

    Google Scholar 

  • Lagg A, Lites B, Harvey J, Gosain S, Centeno R. 2015. Measurements of photospheric and chromospheric magnetic fields. Space Sci Rev, 659: 1–40

    Google Scholar 

  • Landolfi M, Landi Degl’Innocenti E. 1982. Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles. Sol Phys, 78: 355–364

    Article  Google Scholar 

  • Leake J E, Linton M G, Antiochos S K. 2014. Simulations of emerging magnetic flux. II. The formation of unstable coronal flux ropes and the initiation of coronal mass ejections. Astrophys J, 787: 46

    Article  Google Scholar 

  • Leake J E, Linton M G, Török T. 2013. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys J, 778: 99

    Article  Google Scholar 

  • Leka K D, Barnes G, Crouch A D, Metcalf T R, Gary G A, Jing J, Liu Y. 2009. Resolving the 180° ambiguity in solar vector magnetic field data: Evaluating the effects of noise, spatial resolution, and method assumptions. Sol Phys, 260: 83–108

    Article  Google Scholar 

  • Li J, Amari T, Fan Y. 2007. Resolution of the 180° ambiguity for inverse horizontal magnetic field configurations. Astrophys J, 654: 675–686

    Article  Google Scholar 

  • Li Y, Ding M D, Guo Y, Dai Y. 2014. On the nature of the extreme-ultraviolet late phase of solar flares. Astrophys J, 793: 85

    Article  Google Scholar 

  • Lim E K, Yurchyshyn V, Park S H, Kim S, Cho K S, Kumar P, Chae J, Yang H, Cho K, Song D, Kim Y H. 2016. Observations of a series of flares and associated jet-like eruptions driven by the emergence of twisted magnetic fields. Astrophys J, 817: 39

    Article  Google Scholar 

  • Lin H, Kuhn J R, Coulter R. 2004. Coronal magnetic field measurements. Astrophys J, 613: L177–L180

    Article  Google Scholar 

  • Lin H, Penn M J, Tomczyk S. 2000. A new precise measurement of the coronal magnetic field strength. Astrophys J, 541: L83–L86

    Article  Google Scholar 

  • Lin J, Forbes T G. 2000. Effects of reconnection on the coronal mass ejection process. J Geophys Res, 105: 2375–2392

    Article  Google Scholar 

  • Liu K, Zhang J, Wang Y, Cheng X. 2013. On the origin of the extremeultraviolet late phase of solar flares. Astrophys J, 768: 150

    Article  Google Scholar 

  • Liu R, Kliem B, Titov V S, Chen J, Wang Y, Wang H, Liu C, Xu Y, Wiegelmann T. 2016. Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys J, 818: 148

    Article  Google Scholar 

  • Liu Y, Hoeksema J T, Bobra M, Hayashi K, Schuck P W, Sun X. 2014. Magnetic helicity in emerging solar active regions. Astrophys J, 785: 13

    Article  Google Scholar 

  • Liu Y, Schuck P W. 2012. Magnetic energy and helicity in two emerging active regions in the Sun. Astrophys J, 761: 105

    Article  Google Scholar 

  • Longcope D W. 2004. Inferring a photospheric velocity field from a sequence of vector magnetograms: The minimum energy fit. Astrophys J, 612: 1181–1192

    Article  Google Scholar 

  • Longcope D W. 2005. Topological methods for the analysis of solar magnetic fields. Living Rev Sol Phys, 2: 7

    Article  Google Scholar 

  • Longcope D W, Malanushenko A. 2008. Defining and calculating self-helicity in coronal magnetic fields. Astrophys J, 674: 1130–1143

    Article  Google Scholar 

  • López Ariste A, Rayrole J, Semel M. 2000. First results from THEMIS spectropolarimetric mode. Astron Astrophys Suppl Ser, 142: 137–148

    Article  Google Scholar 

  • Low B C. 1985. Three-dimensional structures of magnetostatic atmospheres. I-Theory. Astrophys J, 293: 31–43

    Article  Google Scholar 

  • Low B C. 2006. Magnetic helicity in a two-flux partitioning of an ideal hydromagnetic fluid. Astrophys J, 646: 1288–1302

    Article  Google Scholar 

  • Low B C. 2011. Absolute magnetic helicity and the cylindrical magnetic field. Phys Plasmas, 18: 052901

    Article  Google Scholar 

  • Low B C, Lou Y Q. 1990. Modeling solar force-free magnetic fields. Astrophys J, 352: 343–352

    Article  Google Scholar 

  • Magara T. 2008. Emergence of a partially split flux tube into the solar atmosphere. Publ Astron Soc Jpn, 60: 809–826

    Article  Google Scholar 

  • Magara T, Longcope D W. 2001. Sigmoid structure of an emerging flux tube. Astrophys J, 559: L55–L59

    Article  Google Scholar 

  • Magara T, Longcope D W. 2003. Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys J, 586: 630–649

    Article  Google Scholar 

  • Malanushenko A, Schrijver C J, DeRosa M L, Wheatland M S. 2014. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare. Astrophys J, 783: 102

    Article  Google Scholar 

  • Malanushenko A, Schrijver C J, DeRosa M L, Wheatland M S, Gilchrist S A. 2012. Guiding nonlinear force-free modeling using coronal observations: First results using a quasi-grad-rubin scheme. Astrophys J, 756: 153

    Article  Google Scholar 

  • Manchester IV W, Gombosi T, DeZeeuw D, Fan Y. 2004. Eruption of a buoyantly emerging magnetic flux rope. Astrophys J, 610: 588–596

    Article  Google Scholar 

  • Mandrini C H, Schmieder B, Démoulin P, Guo Y, Cristiani G D. 2014. Topological analysis of emerging bipole clusters producing violent solar events. Sol Phys, 289: 2041–2071

    Article  Google Scholar 

  • Marquardt D W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J Soc Industrial Appl Math, 11: 431–441

    Article  Google Scholar 

  • Martínez-Sykora J, Hansteen V, Carlsson M. 2008. Twisted flux tube emergence from the convection zone to the corona. Astrophys J, 679: 871–888

    Article  Google Scholar 

  • Masson S, Pariat E, Aulanier G, Schrijver C J. 2009. The nature of flare ribbons in coronal null-point topology. Astrophys J, 700: 559–578

    Article  Google Scholar 

  • McClymont A N, Jiao L, Mikic Z. 1997. Problems and progress in computing three-dimensional coronal active region magnetic fields from boundary data. Sol Phys, 174: 191–218

    Article  Google Scholar 

  • McClymont A N, Mikic Z. 1994. Thickness variations along coronal loops inferred from vector magnetograph data. Astrophys J, 422: 899–905

    Article  Google Scholar 

  • Metcalf T R. 1994. Resolving the 180-degree ambiguity in vector magnetic field measurements: The “minimum” energy solution. Sol Phys, 155: 235–242

    Article  Google Scholar 

  • Metcalf T R, De Rosa M L, Schrijver C J, Barnes G, van Ballegooijen A A, Wiegelmann T, Wheatland M S, Valori G, McTtiernan J M. 2008. Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Sol Phys, 247: 269–299

    Article  Google Scholar 

  • Metcalf T R, Leka K D, Barnes G, Lites B W, Georgoulis M K, Pevtsov A A, Balasubramaniam K S, Gary G A, Jing J, Li J, Liu Y, Wang H N, Abramenko V, Yurchyshyn V, Moon Y J. 2006. An overview of existing algorithms for resolving the 180° ambiguity in vector magnetic fields: Quantitative tests with synthetic data. Sol Phys, 237: 267–296

    Article  Google Scholar 

  • Mikic Z, McClymont A N. 1994. Deducing Coronal Magnetic Fields from Vector Magnetograms. In: Balasubramaniam K S, Simon G W, eds. Solar Active Region Evolution: Comparing Models with Observations. Astronom Soc Pacific Conference Ser, 68: 225

    Google Scholar 

  • Moffatt H K. 1969. The degree of knottedness of tangled vortex lines. J Fluid Mech, 35: 117–129

    Article  Google Scholar 

  • Moffatt H K, Ricca R L. 1992. Helicity and the calugareanu invariant. Proc R Soc A-Math Phys Eng Sci, 439: 411–429

    Article  Google Scholar 

  • Molodenskii M M. 1969. Integral properties of force-free fields. Soviet Astronomy, 12: 585

    Google Scholar 

  • Moon Y J, Chae J, Choe G S, Wang H, Park Y D, Yun H S, Yurchyshyn V, Goode P R. 2002. Flare activity and magnetic helicity injection by photospheric horizontal motions. Astrophys J, 574: 1066–1073

    Article  Google Scholar 

  • Moon Y J, Wang H, Spirock T J, Goode P R, Park Y D. 2003. A new method for resolving the 180° ambiguity in solar vector magnetograms. Sol Phys, 217: 79–94

    Article  Google Scholar 

  • Moore R L, Labonte B J. 1980. The filament eruption in the 3B flare of July 29. 1973? Onset and magnetic field configuration. In: Dryer M, Tandberg- Hanssen E, eds. IAU Symposium. Solar Interplanetary Dynam, 91: 207

    Article  Google Scholar 

  • Moore R L, Sterling A C, Hudson H S, Lemen J R. 2001. Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys J, 552: 833–848

    Article  Google Scholar 

  • Moraitis K, Tziotziou K, Georgoulis M K, Archontis V. 2014. Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Sol Phys, 289: 4453–4480

    Article  Google Scholar 

  • Murray M J, Hood A W, Moreno-Insertis F, Galsgaard K, Archontis V. 2006. 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron Astrophys, 460: 909–923

    Article  Google Scholar 

  • Nakagawa Y. 1974. Dynamics of the solar magnetic field. I. Method of examination of force-free magnetic fields. Astrophys J, 190: 437–440

    Article  Google Scholar 

  • Nakagawa Y, Raadu M A. 1972. On practical representation of magnetic field. Sol Phys, 25: 127–135

    Article  Google Scholar 

  • Neukirch T. 1995. On self-consistent three-dimensional analytic solutions of the magnetohydrostatic equations. Astron Astrophys, 301: 628

    Google Scholar 

  • Nindos A, Zhang H. 2002. Photospheric motions and coronal mass ejection productivity. Astrophys J, 573: L133–L136

    Article  Google Scholar 

  • Nordlund Å, Stein R F, Asplund M. 2009. Solar surface convection. Living Rev Sol Phys, 6: 2

    Article  Google Scholar 

  • Ouyang Y, Zhou Y H, Chen P F, Fang C. 2017. Chirality and magnetic configurations of solar filaments. Astrophys J, 835: 94

    Article  Google Scholar 

  • Pariat E, Antiochos S K, DeVore C R. 2009. A model for solar polar jets. Astrophys J, 691: 61–74

    Article  Google Scholar 

  • Pariat E, Antiochos S K, DeVore C R. 2010. Three-dimensional modeling of quasi-homologous solar jets. Astrophys J, 714: 1762–1778

    Article  Google Scholar 

  • Pariat E, Démoulin P. 2012. Estimation of the squashing degree within a three-dimensional domain. Astron Astrophys, 541: A78

    Article  Google Scholar 

  • Pariat E, Démoulin P, Berger M A. 2005. Photospheric flux density of magnetic helicity. Astron Astrophys, 439: 1191–1203

    Article  Google Scholar 

  • Pariat E, Leake J E, Valori G, Linton M G, Zuccarello F P, Dalmasse K. 2017a. Relative magnetic helicity as a diagnostic of solar eruptivity. Astron Astrophys, 601: A125

    Article  Google Scholar 

  • Pariat E, Valori G, Anfinogentov S, Chen F, Georgoulis M K, Guo Y, Liu Y, Moraitis K, Thalmann J K, Yang S. 2017b. Magnetic helicity estimations in models and observations of the solar magnetic field. Part II: Flux methods. Space Sci Rev, to be submitted

    Google Scholar 

  • Pariat E, Valori G, Démoulin P, Dalmasse K. 2015. Testing magnetic helicity conservation in a solar-like active event. Astron Astrophys, 580: A128

    Article  Google Scholar 

  • Park S H, Chae J, Jing J, Tan C, Wang H. 2010. Time evolution of coronal magnetic helicity in the flaring active region NOAA 10930. Astrophys J, 720: 1102–1107

    Article  Google Scholar 

  • Parnell C E, Smith J M, Neukirch T, Priest E R. 1996. The structure of three-dimensional magnetic neutral points. Phys Plasmas, 3: 759–770

    Article  Google Scholar 

  • Pevtsov A A, Balasubramaniam K S, Rogers J W. 2003. Chirality of chromospheric filaments. Astrophys J, 595: 500–505

    Article  Google Scholar 

  • Pevtsov A A, Berger M A, Nindos A, Norton A A, van Driel-Gesztelyi L. 2014. Magnetic helicity, tilt, and twist. Space Sci Rev, 186: 285–324

    Article  Google Scholar 

  • Pevtsov A A, Canfield R C, Metcalf T R. 1994. Patterns of helicity in solar active regions. Astrophys J, 425: L117–L119

    Article  Google Scholar 

  • Pevtsov A A, Canfield R C, Metcalf T R. 1995. Latitudinal variation of helicity of photospheric magnetic fields. Astrophys J, 440: L109–L112

    Article  Google Scholar 

  • Pontin D, Galsgaard K, Démoulin P. 2016. Why are flare ribbons associated with the spines of magnetic null points generically elongated? Sol Phys, 291: 1739–1759

    Article  Google Scholar 

  • Porth O, Xia C, Hendrix T, Moschou S P, Keppens R. 2014. MPI-AMRVAC for solar and astrophysics. Astrophys J Suppl Ser, 214: 4

    Article  Google Scholar 

  • Press W H, Teukolsky S A, Vetterling W T, Flannery B P. 1988. Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University Press

    Google Scholar 

  • Priest E R, Bungey T N, Titov V S. 1997. The 3D topology and interaction of complex magnetic flux systems. Geophys Astrophys Fluid Dyn, 84: 127–163

    Article  Google Scholar 

  • Priest E R, Démoulin P. 1995. Three-dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping. J Geophys Res, 100: 23443–23464

    Article  Google Scholar 

  • Priest E R, Parnell C E, Martin S F. 1994. A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys J, 427: 459–474

    Article  Google Scholar 

  • Prior C, Yeates A R. 2014. On the helicity of open magnetic fields. Astrophys J, 787: 100

    Article  Google Scholar 

  • Rachkovsky D N. 1962. Magnetic rotation effects in spectral lines. Izv Krymskoi Astrofiz Obs, 27: 148

    Google Scholar 

  • Reid H A S, Vilmer N, Aulanier G, Pariat E. 2012. X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare. Astron Astrophys, 547: A52

    Article  Google Scholar 

  • Rempel M, Schüssler M, Knölker M. 2009. Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys J, 691: 640–649

    Article  Google Scholar 

  • Romano P, Zuccarello F P, Guglielmino S L, Zuccarello F. 2014. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes. Astrophys J, 794: 118

    Article  Google Scholar 

  • Roumeliotis G. 1996. The “Stress-and-Relax” method for reconstructing the coronal magnetic field from vector magnetograph data. Astrophys J, 473: 1095–1103

    Article  Google Scholar 

  • Roussev I I, Galsgaard K, Downs C, Lugaz N, Sokolov I V, Moise E, Lin J. 2012. Explaining fast ejections of plasma and exotic X-ray emission from the solar corona. Nat Phys, 8: 845–849

    Article  Google Scholar 

  • Ruan P, Wiegelmann T, Inhester B, Neukirch T, Solanki S K, Feng L. 2008. A first step in reconstructing the solar coronaself-consistently with a magnetohydrostatic model during solar activity minimum. Astron Astrophys, 481: 827–834

    Article  Google Scholar 

  • Rudenko G V, Anfinogentov S A. 2014. Very fast and accurate azimuth disambiguation of vector magnetograms. Sol Phys, 289: 1499–1516

    Article  Google Scholar 

  • Rudenko G V, Myshyakov I I. 2011. Gauge-invariant helicity for force-free magnetic fields in a rectangular box. Sol Phys, 270: 165–173

    Article  Google Scholar 

  • Russell A J B, Yeates A R, Hornig G, Wilmot-Smith A L. 2015. Evolution of field line helicity during magnetic reconnection. Phys Plasmas, 22: 032106

    Article  Google Scholar 

  • Rust D M, Kumar A. 1994. Helical magnetic fields in filaments. Sol Phys, 155: 69–97

    Article  Google Scholar 

  • Sakurai T. 1981. Calculation of force-free magnetic field with non-constant a. Sol Phys, 69: 343–359

    Article  Google Scholar 

  • Savcheva A, Pariat E, McKillop S, McCauley P, Hanson E, Su Y, DeLuca E E. 2016. The relation between solar eruption topologies and observed flare features. II. Dynamical evolution. Astrophys J, 817: 43

    Article  Google Scholar 

  • Savcheva A, Pariat E, McKillop S, McCauley P, Hanson E, Su Y, Werner E, DeLuca E E. 2015. The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys J, 810: 96

    Article  Google Scholar 

  • Savcheva A, Pariat E, van Ballegooijen A, Aulanier G, DeLuca E. 2012a. Sigmoidal active region on the sun: Comparison of a magnetohydrody- namical simulation and a nonlinear force-free field model. Astrophys J, 750: 15

    Article  Google Scholar 

  • Savcheva A S, van Ballegooijen A A, DeLuca E E. 2012b. Field topology analysis of a long-lasting coronal sigmoid. Astrophys J, 744: 78

    Article  Google Scholar 

  • Schatten K H, Wilcox J M, Ness N F. 1969. A model of interplanetary and coronal magnetic fields. Sol Phys, 6: 442–455

    Article  Google Scholar 

  • Scherrer P H, Schou J, Bush R I, Kosovichev A G, Bogart R S, Hoeksema J T, Liu Y, Duvall T L, Zhao J, Title A M, Schrijver C J, Tarbell T D, Tomczyk S. 2012. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys, 275: 207–227

    Article  Google Scholar 

  • Schmidt H U. 1964. On the observable effects of magnetic energy storage and release connected with solar flares. NASA Spec Publ, 50: 107

    Google Scholar 

  • Schmieder B, Guo Y, Moreno-Insertis F, Aulanier G, Yelles Chaouche L, Nishizuka N, Harra L K, Thalmann J K, Vargas Dominguez S, Liu Y. 2013. Twisting solar coronal jet launched at the boundary of an active region. Astron Astrophys, 559: A1

    Article  Google Scholar 

  • Schmieder B, Tian H, Kucera T, López Ariste A, Mein N, Mein P, Dalmasse K, Golub L. 2014. Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP. Astron Astrophys, 569: A85

    Article  Google Scholar 

  • Schou J, Scherrer P H, Bush R I, Wachter R, Couvidat S, Rabello-Soares M C, Bogart R S, Hoeksema J T, Liu Y, Duvall T L, Akin D J, Allard B A, Miles J W, Rairden R, Shine R A, Tarbell T D, Title A M, Wolfson C J, Elmore D F, Norton A A, Tomczyk S. 2012. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys, 275: 229–259

    Article  Google Scholar 

  • Schrijver C J, De Rosa M L. 2003. Photospheric and heliospheric magnetic fields. Sol Phys, 212: 165–200

    Article  Google Scholar 

  • Schrijver C J, Derosa M L, Metcalf T R, Liu Y, Mctiernan J, Régnier S, Valori G, Wheatland M S, Wiegelmann T. 2006. Nonlinear force-free modeling of coronal magnetic fields part I: A quantitative comparison of methods. Sol Phys, 235: 161–190

    Article  Google Scholar 

  • Schuck P W. 2005. Local correlation tracking and the magnetic induction equation. Astrophys J, 632: L53–L56

    Article  Google Scholar 

  • Schuck P W. 2006. Tracking magnetic footpoints with the magnetic induction equation. Astrophys J, 646: 1358–1391

    Article  Google Scholar 

  • Schuck P W. 2008. Tracking vector magnetograms with the magnetic induction equation. Astrophys J, 683: 1134–1152

    Article  Google Scholar 

  • Seehafer N. 1978. Determination of constant a force-free solar magnetic fields from magnetograph data. Sol Phys, 58: 215–223

    Article  Google Scholar 

  • Seehafer N. 1986. On the magnetic field line topology in solar active regions. Sol Phys, 105: 223–235

    Article  Google Scholar 

  • Shen F, Shen C, Zhang J, Hess P, Wang Y, Feng X, Cheng H, Yang Y. 2014. Evolution of the 12 July 2012 CME from the Sun to the Earth: Dataconstrained three-dimensional MHD simulations. J Geophys Res-Space Phys, 119: 7128–7141

    Article  Google Scholar 

  • Shibata K, Nozawa S, Matsumoto R. 1992. Magnetic reconnection associated with emerging magnetic flux. Publ Astron Soc Japan, 44: 265–272

    Google Scholar 

  • Shimizu T, Nagata S, Tsuneta S, Tarbell T, Edwards C, Shine R, Hoffmann C, Thomas E, Sour S, Rehse R, Ito O, Kashiwagi Y, Tabata M, Kodeki K, Nagase M, Matsuzaki K, Kobayashi K, Ichimoto K, Suematsu Y. 2008. Image stabilization system for Hinode (Solar-B) solar optical telescope. Sol Phys, 249: 221–232

    Article  Google Scholar 

  • Socas-Navarro H. 2001. Stokes inversion techniques: Recent achievements and future horizons. In: Sigwarth M, ed. ASP Conf. Ser., Vol. 236, Advanced Solar Polarimetry?Theory, Observation, and Instrumentation. 487

    Google Scholar 

  • Socas-Navarro H, Trujillo Bueno J, Ruiz Cobo B. 2000. Non-LTE inversion of Stokes profiles induced by the zeeman effect. Astrophys J, 530: 977–993

    Article  Google Scholar 

  • Song M T, Fang C, Tang Y H, Wu S T, Zhang Y A. 2006. A new and fast way to reconstruct a nonlinear force-free field in the solar corona. Astrophys J, 649: 1084–1092

    Article  Google Scholar 

  • Stein R F, Nordlund Å. 2000. Realistic solar convection simulations. Sol Phys, 192: 91–108

    Article  Google Scholar 

  • Stenflo J O. 2013. Solar magnetic fields as revealed by Stokes polarimetry. Astron Astrophys Rev, 21: 66

    Article  Google Scholar 

  • Su J T, Zhang H Q. 2004. Calibration of vector magnetogram with the nonlinear least-squares fitting technique. Chin J Astron Astrophys, 4: 365–376

    Article  Google Scholar 

  • Su J T, Zhang H Q. 2007. The effects of polarization crosstalk and solar rotation on measuring full-disk solar photospheric vector magnetic fields. Astrophys J, 666: 559–575

    Article  Google Scholar 

  • Su Y, van Ballegooijen A, Schmieder B, Berlicki A, Guo Y, Golub L, Huang G. 2009. Flare energy build-up in a decaying active region near a coronal hole. Astrophys J, 704: 341–353

    Article  Google Scholar 

  • Suematsu Y, Tsuneta S, Ichimoto K, Shimizu T, Otsubo M, Katsukawa Y, Nakagiri M, Noguchi M, Tamura T, Kato Y, Hara H, Kubo M, Mikami I, Saito H, Matsushita T, Kawaguchi N, Nakaoji T, Nagae K, Shimada S, Takeyama N, Yamamuro T. 2008. The solar optical telescope of solar-B (Hinode): The optical telescope assembly. Sol Phys, 249: 197–220

    Article  Google Scholar 

  • Sun X, Todd Hoeksema J, Liu Y, Aulanier G, Su Y, Hannah I G, Hock R A. 2013. Hot spine loops and the nature of a late-phase solar flare. Astrophys J, 778: 139

    Article  Google Scholar 

  • Sun X, Hoeksema J T, Liu Y, Chen Q, Hayashi K. 2012. A non-radial eruption in a quadrupolar magnetic configuration with a coronal null. Astrophys J, 757: 149

    Article  Google Scholar 

  • Tadesse T, Wiegelmann T, Inhester B. 2009. Nonlinear force-free coronal magnetic field modelling and preprocessing of vector magnetograms in spherical geometry. Astron Astrophys, 508: 421–432

    Article  Google Scholar 

  • Tadesse T, Wiegelmann T, Inhester B, Pevtsov A. 2011. Nonlinear force-free field extrapolation in spherical geometry: Improved boundary data treatment applied to a SOLIS/VSM vector magnetogram. Astron Astrophys, 527: A30

    Article  Google Scholar 

  • Tassev S, Savcheva A. 2017. QSL squasher: A fast quasi-separatrix layer map calculator. Astrophys J, 840: 89

    Article  Google Scholar 

  • Taylor J B. 1974. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys Rev Lett, 33: 1139

    Article  Google Scholar 

  • Taylor J B. 1986. Relaxation and magnetic reconnection in plasmas. Rev Mod Phys, 58: 741–763

    Article  Google Scholar 

  • Teng F. 2015. Application of kernel based machine learning to the inversion problem of photospheric magnetic fields. Sol Phys, 290: 2693–2708

    Article  Google Scholar 

  • Teng F, Deng Y Y. 2014. Some tests and improvements to the VFISV: Very fast inversion of the stokes vector for the helioseismic and magnetic imager. Res Astron Astrophys, 14: 1469–1480

    Article  Google Scholar 

  • Teng F, Deng Y Y. 2016. A fast Stokes inversion technique based on quadratic regression. Res Astron Astrophys, 16: 002

    Article  Google Scholar 

  • Teuber D, Tandberg-Hanssen E, Hagyard M J. 1977. Computer solutions for studying correlations between solar magnetic fields and skylab X-ray observations. Sol Phys, 53: 97–110

    Article  Google Scholar 

  • Thalmann J K, Inhester B, Wiegelmann T. 2011. Estimating the relative helicity of coronal magnetic fields. Sol Phys, 272: 243–255

    Article  Google Scholar 

  • Thompson W T. 2006. Coordinate systems for solar image data. Astron Astrophys, 449: 791–803

    Article  Google Scholar 

  • Tian L, Alexander D. 2008. On the origin of magnetic helicity in the solar corona. Astrophys J, 673: 532–543

    Article  Google Scholar 

  • Titov V S, Démoulin P. 1999. Basic topology of twisted magnetic configurations in solar flares. Astron Astrophys, 351: 707–720

    Google Scholar 

  • Titov V S, Hornig G, Démoulin P. 2002. Theory of magnetic connectivity in the solar corona. J Geophys Res, 107: SSH 3–1–SSH 3–13

    Article  Google Scholar 

  • Titov V S, Mikic Z, Linker J A, Lionello R, Antiochos S K. 2011. Magnetic topology of coronal hole linkages. Astrophys J, 731: 111

    Article  Google Scholar 

  • Titov V S, Priest E R, Démoulin P. 1993. Conditions for the appearance of “bald patches” at the solar surface. Astron Astrophys, 276: 564–570

    Google Scholar 

  • Török T, Kliem B. 2003. The evolution of twisting coronal magnetic flux tubes. Astron Astrophys, 406: 1043–1059

    Article  Google Scholar 

  • Török T, Kliem B. 2005. Confined and ejective eruptions of kink-unstable flux ropes. Astrophys J, 630: L97–L100

    Article  Google Scholar 

  • Török T, Kliem B, Titov V S. 2004. Ideal kink instability of a magnetic loop equilibrium. Astron Astrophys, 413: L27–L30

    Article  Google Scholar 

  • Tóth G, van der Holst B, Huang Z. 2011. Obtaining potential field solutions with spherical harmonics and finite differences. Astrophys J, 732: 102

    Article  Google Scholar 

  • Tsuneta S, Ichimoto K, Katsukawa Y, Nagata S, Otsubo M, Shimizu T, Suematsu Y, Nakagiri M, Noguchi M, Tarbell T, Title A, Shine R, Rosenberg W, Hoffmann C, Jurcevich B, Kushner G, Levay M, Lites B, Elmore D, Matsushita T, Kawaguchi N, Saito H, Mikami I, Hill L D, Owens J K. 2008. The solar optical telescope for the Hinode mission: An overview. Sol Phys, 249: 167–196

    Article  Google Scholar 

  • Tziotziou K, Georgoulis M K, Liu Y. 2013. Interpreting eruptive behavior in NOAA A. 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys J, 772: 115

    Article  Google Scholar 

  • Tziotziou K, Georgoulis M K, Raouafi N E. 2012. The magnetic energyhelicity diagram of solar active regions. Astrophys J, 759: L4

    Article  Google Scholar 

  • Tziotziou K, Moraitis K, Georgoulis M K, Archontis V. 2014. Validation of the magnetic energy vs. helicity scaling in solar magnetic structures. Astron Astrophys, 570: L1

    Article  Google Scholar 

  • Unno W. 1956. Line formation of a normal zeeman triplet. Publ Astronom Soc Japan, 8: 108

    Google Scholar 

  • Valori G, Démoulin P, Pariat E. 2012. Comparing values of the relative magnetic helicity in finite volumes. Sol Phys, 278: 347–366

    Article  Google Scholar 

  • Valori G, Démoulin P, Pariat E, Masson S. 2013. Accuracy of magnetic energy computations. Astron Astrophys, 553: A38

    Article  Google Scholar 

  • Valori G, Kliem B, Fuhrmann M. 2007. Magnetofrictional extrapolations of low and lou’s force-free equilibria. Sol Phys, 245: 263–285

    Article  Google Scholar 

  • Valori G, Kliem B, Keppens R. 2005. Extrapolation of a nonlinear force-free field containing a highly twisted magnetic loop. Astron Astrophys, 433: 335–347

    Article  Google Scholar 

  • Valori G, Kliem B, Török T, Titov V S. 2010. Testing magnetofrictional extrapolation with the Titov-Démoulin model of solar active regions. Astron Astrophys, 519: A44

    Article  Google Scholar 

  • Valori G, Pariat E, Anfinogentov S, Chen F, Georgoulis M K, Guo Y, Liu Y, Moraitis K, Thalmann J K, Yang S. 2016. Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: Finite volume methods. Space Sci Rev, 201: 147–200

    Article  Google Scholar 

  • van Ballegooijen A A. 2004. Observations and modeling of a filament on the Sun. Astrophys J, 612: 519–529

    Article  Google Scholar 

  • Vemareddy P, Ambastha A, Maurya R A, Chae J. 2012. On the injection of helicity by the shearing motion of fluxes in relation to flares and coronal mass ejections. Astrophys J, 761: 86

    Article  Google Scholar 

  • Wang H. 1997. Distribution of 2-D magnetic saddle points and morphology of flare kernels in solar active regions. Sol Phys, 174: 265–279

    Article  Google Scholar 

  • Wang H, Liu C, Ahn K, Xu Y, Jing J, Deng N, Huang N, Liu R, Kusano K, Fleishman G D, Gary D E, Cao W. 2017. High-resolution observations of flare precursors in the low solar atmosphere. Nat astron, 1: 0085

    Article  Google Scholar 

  • Wang H, Yan Y, Sakurai T. 2001. Topology of magnetic field and coronal heating in solar active regions. Sol Phys, 201: 323–336

    Article  Google Scholar 

  • Wang R, Yan Y, Tan B. 2013. Three-dimensional nonlinear force-free field reconstruction of solar active regio. 11158 by direct boundary integral equation. Sol Phys, 288: 507–529

    Article  Google Scholar 

  • Welsch B T, Abbett W P, De Rosa M L, Fisher G H, Georgoulis M K, Kusano K, Longcope D W, Ravindra B, Schuck P W. 2007. Tests and comparisons of velocity-inversion techniques. Astrophys J, 670: 1434–1452

    Article  Google Scholar 

  • Welsch B T, Fisher G H, Abbett W P, Regnier S. 2004. ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys J, 610: 1148–1156

    Article  Google Scholar 

  • Wheatland M S. 2004. Parallel construction of nonlinear force-free fields. Sol Phys, 222: 247–264

    Article  Google Scholar 

  • Wheatland M S. 2006. A fast current-field iteration method for calculating nonlinear force-free fields. Sol Phys, 238: 29–39

    Article  Google Scholar 

  • Wheatland M S, Sturrock P A, Roumeliotis G. 2000. An optimization approach to reconstructing force-free fields. Astrophys J, 540: 1150–1155

    Article  Google Scholar 

  • White S M. 2002. New radio instrumentation for the study of sunspots and starspots. Astron Nachr, 323: 265–270

    Article  Google Scholar 

  • Wiegelmann T. 2004. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Sol Phys, 219: 87–108

    Article  Google Scholar 

  • Wiegelmann T. 2007. Computing nonlinear force-free coronal magnetic fields in spherical geometry. Sol Phys, 240: 227–239

    Article  Google Scholar 

  • Wiegelmann T, Inhester B. 2003. Magnetic modeling and tomography: First steps towards a consistent reconstruction of the solar corona. Sol Phys, 214: 287–312

    Article  Google Scholar 

  • Wiegelmann T, Inhester B, Sakurai T. 2006. Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Sol Phys, 233: 215–232

    Article  Google Scholar 

  • Wiegelmann T, Neukirch T, Ruan P, Inhester B. 2007. Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry. Astron Astrophys, 475: 701–706

    Article  Google Scholar 

  • Wiegelmann T, Sakurai T. 2012. Solar force-free magnetic fields. Living Rev Sol Phys, 9: 5

    Article  Google Scholar 

  • Woltjer L. 1958. A theorem on force-free magnetic fields. Proc Natl Acad Sci USA, 44: 489–491

    Article  Google Scholar 

  • Woods T N, Eparvier F G, Hock R, Jones A R, Woodraska D, Judge D, Didkovsky L, Lean J, Mariska J, Warren H, McMullin D, Chamberlin P, Berthiaume G, Bailey S, Fuller-Rowell T, Sojka J, Tobiska W K, Viereck R. 2012. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): Overview of science objectives, instrument design, data products, and model developments. Sol Phys, 275: 115–143

    Article  Google Scholar 

  • Woods T N, Hock R, Eparvier F, Jones A R, Chamberlin P C, Klimchuk J A, Didkovsky L, Judge D, Mariska J, Warren H, Schrijver C J, Webb D F, Bailey S, Tobiska W K. 2011. New solar extreme-ultraviolet irradiance observations during flares. Astrophys J, 739: 59

    Article  Google Scholar 

  • Wu S T, Sun M T, Chang H M, Hagyard M J, Gary G A. 1990. On the numerical computation of nonlinear force-free magnetic fields. Astrophys J, 362: 698–708

    Article  Google Scholar 

  • Xia C, Keppens R. 2016a. Formation and plasma circulation of solar prominences. Astrophys J, 823: 22

    Article  Google Scholar 

  • Xia C, Keppens R. 2016b. Internal dynamics of a twin-layer solar prominence. Astrophys J, 825: L29

    Article  Google Scholar 

  • Xia C, Keppens R, Antolin P, Porth O. 2014a. Simulating the in situ condensation process of solar prominences. Astrophys J, 792: L38

    Article  Google Scholar 

  • Xia C, Keppens R, Guo Y. 2014b. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. Astrophys J, 780: 130

    Article  Google Scholar 

  • Yamamoto T T, Sakurai T. 2009. Time variation and statistical studies of magnetic helicity injection in solar magnetic regions. Astrophys J, 698: 928–937

    Article  Google Scholar 

  • Yan Y, Deng Y, Karlický M, Fu Q, Wang S, Liu Y. 2001. The magnetic rope structure and associated energetic processes in the 2000 July 14 solar flare. Astrophys J, 551: L115–L119

    Article  Google Scholar 

  • Yan Y, Li Z. 2006. Direct boundary integral formulation for solar non-constant- a force-free magnetic fields. Astrophys J, 638: 1162–1168

    Article  Google Scholar 

  • Yan Y, Sakurai T. 1997. Analysis of it YOHKOH SXT coronal loops and calculated force-free magnetic field lines from vector magnetograms. Sol Phys, 174: 65–71

    Article  Google Scholar 

  • Yan Y, Sakurai T. 2000. New boundary integral equation representation for finite energy force-free magnetic fields in open space above the Sun. Sol Phys, 195: 89–109

    Article  Google Scholar 

  • Yang K, Guo Y, Ding M D. 2015. On th. 2012 October 23 circular ribbon flare: Emission features and magnetic topology. Astrophys J, 806: 171

    Article  Google Scholar 

  • Yang K, Guo Y, Ding M D. 2016. Quantifying the topology and evolution of a magnetic flux rope associated with multi-flare activities. Astrophys J, 824: 148

    Article  Google Scholar 

  • Yang S, Büchner J, Santos J C, Zhang H. 2013. Evolution of relative magnetic helicity: Method of computation and its application to a simulated solar corona above an active region. Sol Phys, 283: 369–382

    Article  Google Scholar 

  • Yang S, Zhang H, Büchner J. 2009. Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions. Astron Astrophys, 502: 333–340

    Article  Google Scholar 

  • Yang W H, Sturrock P A, Antiochos S K. 1986. Force-free magnetic fields—The magneto-frictional method. Astrophys J, 309: 383–391

    Article  Google Scholar 

  • Zhang H, Ai G, Yan X, Li W, Liu Y. 1994. Evolution of vector magnetic field and white-light flares in a solar active region (NOAA 6659) i. 1991 June. Astrophys J, 423: 828

    Article  Google Scholar 

  • Zhang H, Bao S. 1998. Latitudinal distribution of photospheric current helicity and solar activities. Astron Astrophys, 339: 880–886

    Google Scholar 

  • Zhang H, Bao S. 1999. Distribution of photospheric electric current helicity and solar activities. Astrophys J, 519: 876–883

    Article  Google Scholar 

  • Zhang H, Sakurai T, Pevtsov A, Gao Y, Xu H, Sokoloff D D, Kuzanyan K. 2010. A new dynamo pattern revealed by solar helical magnetic fields. Mon Not R Astron Soc-Lett, 402: L30–L33

    Article  Google Scholar 

  • Zhang H, Sokoloff D, Rogachevskii I, Moss D, Lamburt V, Kuzanyan K, Kleeorin N. 2006a. The radial distribution of magnetic helicity in the solar convective zone: Observations and dynamo theory. Mon Not R Astron Soc, 365: 276–286

    Article  Google Scholar 

  • Zhang M, Flyer N, Low B C. 2006b. Magnetic field confinement in the corona: The role of magnetic helicity accumulation. Astrophys J, 644: 575–586

    Article  Google Scholar 

  • Zhang M, Low B C. 2003. Magnetic flux emergence into the solar corona. III. The role of magnetic helicity conservation. Astrophys J, 584: 479–496

    Article  Google Scholar 

  • Zhang Q M, Chen P F, Guo Y, Fang C, Ding M D. 2012. Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration. Astrophys J, 746: 19

    Article  Google Scholar 

  • Zhao H, Wang J X, Zhang J, Xiao C J. 2005. A new method of identifying 3D null points in solar vector magnetic fields. Chin J Astron Astrophys, 5: 443–447

    Article  Google Scholar 

  • Zhao H, Wang J X, Zhang J, Xiao C J, Wang H M. 2008. Determination of the topology skeleton of magnetic fields in a solar active region. Chin J Astron Astrophys, 8: 133–145

    Article  Google Scholar 

  • Zhao J, A. Gilchrist S, Aulanier G, Schmieder B, Pariat E, Li H. 2016. Hooked flare ribbons and flux-rope-related QSL footprints. AstrophysJ, 823: 62

    Article  Google Scholar 

  • Zhao J, Li H, Pariat E, Schmieder B, Guo Y, Wiegelmann T. 2014. Temporal evolution of the magnetic topology of the NOAA active regio. 11158. Astrophys J, 787: 88

    Article  Google Scholar 

  • Zhao X, Todd Hoeksema J. 1993. Unique determination of model coronal magnetic fields using photospheric observations. Sol Phys, 143: 41–48

    Article  Google Scholar 

  • Zhao X, Hoeksema J T. 1994. A coronal magnetic field model with horizontal volume and sheet currents. Sol Phys, 151: 91–105

    Article  Google Scholar 

  • Zhao X P, Hoeksema J T, Scherrer P H. 2000. Modeling the 1994 April 14 polar crown SXR arcade using three-dimensional magnetohydrostatic equilibrium solutions. Astrophys J, 538: 932–939

    Article  Google Scholar 

  • Zhu X S, Wang H N, Du Z L, Fan Y L. 2013. Forced field extrapolation: Testing a magnetohydrodynamic (mhd) relaxation method with a fluxrope emergence model. Astrophys J, 768: 119

    Article  Google Scholar 

  • Zhu X S, Wang H N, Du Z L, He H. 2016. Forced field extrapolation of the magnetic structure of the Ha fibrils in the solar chromosphere. Astrophys J, 826: 51

    Article  Google Scholar 

  • Zirker J B, Martin S F, Harvey K, Gaizauskas V. 1997. Global magnetic patterns of chirality. Sol Phys, 175: 27–44

    Article  Google Scholar 

  • Zuccarello F P, Bemporad A, Jacobs C, Mierla M, Poedts S, Zuccarello F. 2012. The role of streamers in the deflection of coronal mass ejections: Comparison between STEREO three-dimensional reconstructions and numerical simulations. Astrophys J, 744: 66

    Article  Google Scholar 

  • Zuccarello F P, Romano P, Zuccarello F, Poedts S. 2011. Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682. Astron Astrophys, 530: A36

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Feng X S and Prof. Wan W X for the invitation to write the review paper, and thank the three anonymous referees for constructive comments that improve the paper. Guo Y, Cheng X, and Ding M D are supported by National Natural Science Foundation of China (Grant Nos. 11533005, 11203014, 11373023, and 11303016) and National Key Basic Research Special Foundation (Grant No. 2014CB744203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Cheng, X. & Ding, M. Origin and structures of solar eruptions II: Magnetic modeling. Sci. China Earth Sci. 60, 1408–1439 (2017). https://doi.org/10.1007/s11430-017-9081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9081-x

Keywords

Navigation