Skip to main content
Log in

Helical magnetic fields in filaments

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

For both even and odd-numbered solar cycles, right-hand heliform filaments predominate at middle and high latitudes in the northern hemisphere while left-handed ones predominate in the south. This recent discovery has prompted a re-examination of past measurements of magnetic fields in prominences. This re-examination indicates that Rust (1967), in his interpretation of solar cycle 20 measurements in terms of the Kippenhahn-Schlüter model, and Leroy, Bommier, and Sahal-Bréchot (1984), in their interpretation of solar cycle 21 measurements in terms of the Kuperus-Raadu model were both misled by the global pattern of helicity. While the original magnetic field measurements are consistent with the new results about heliform magnetic fields in filaments, neither of the well-known classes of two-dimensional models can produce both the proper axial field direction and the observed pattern of helicity. A global, subsurface velocity pattern that would twist the fields before emergence as filaments seems to be required. In this paper a twisted-flux-rope model consistent with the new understanding of filament fields is presented. The model is based on a constant-α solution of the magnetostatic equations, where electric current densityj(r) =α B(r). The model filament has dimensions in general agreement with observations. It is shown to be stable if the length is less than 140 000 km to 1,400 000 km, depending on the value ofα. The model also provides a new explanation of eruptive prominences and for the origin of the entrained material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athay, R. G., Querfeld, C. W., Smartt, R. N., Landi degl'lnnocenti, E., and Bommier, V.: 1983,Solar Phys. 89, 3.

    Google Scholar 

  • Anzer, U.: 1968,Solar Phys. 3, 298.

    Google Scholar 

  • Anzer, U.: 1985, in M. J. Hagyard (ed.),Measurement of Solar Vector Magnetic Fields, NASA Conf. Publ. 2374, p. 101.

  • Anzer, U.: 1989, in E. Priest (ed.),Dynamics and Structure of Quiescent Solar Prominences, Kluwer Academic Publishers, Dordrecht, Holland, p. 143.

    Google Scholar 

  • Alfvén, H.: 1961,Arkiv Fysik 19, 375.

    Google Scholar 

  • Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M.: 1958,Proc. Roy. Soc. London A244, 17.

    Google Scholar 

  • Bumba, V. and Howard, R.: 1965,Astrophys. J. 141, 1502.

    Google Scholar 

  • Burlaga, L. F.: 1988,J. Geophys. Res. 93, 7217.

    Google Scholar 

  • Burlaga, L. F. and Behannon, K. W.: 1982,Solar Phys. 81, 181.

    Google Scholar 

  • Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford, p. 3.

    Google Scholar 

  • Démoulin, P. and Priest, E. R.: 1989,Astron. Astrophys. 214, 360.

    Google Scholar 

  • Duvall, T. L., Jr., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1979,Solar Phys. 61, 233.

    Google Scholar 

  • Engvold, O.: 1989, in E. Priest (ed.),Dynamics and Structure of Quiescent Solar Prominences, Kluwer Academic Publishers, Dordrecht, Holland, p. 66.

    Google Scholar 

  • Finn, J. M. and Anotonsen, T:: 1985,Comm. Plasma Phys Contr. Fus. 9, 111.

    Google Scholar 

  • Foukal, P.: 1971,Solar Phys. 19, 59.

    Google Scholar 

  • Gigolashvili, M. Sh: 1978,Solar Phys. 60, 293.

    Google Scholar 

  • Goldstein, H.: 1983, inSolar Wind Five, NASA Conf. Publ. 731, 2280.

    Google Scholar 

  • Hood, A. W. and Priest, E. R.: 1979,Solar Phys. 64, 303.

    Google Scholar 

  • Hood, A. W. and Priest, E. R.: 1981,Geophys. Astrophys. Fluid Dynamics 17, 297.

    Google Scholar 

  • Hood, A. and Anzer, U.: 1987,Solar Phys. 111, 333.

    Google Scholar 

  • Howard, R. F.: 1974,Solar Phys. 39, 275.

    Google Scholar 

  • Howard, R. F.: 1991,Solar Phys. 134, 233.

    Google Scholar 

  • Kippenhahn, R. and Schlüter, A.: 1957,Z. Astrophys. 43, 36.

    Google Scholar 

  • Kleczek, J. and Kuperus, M.: 1969,Solar Phys. 6, 72.

    Google Scholar 

  • Kuperus, M. and Raadu, M. A.: 1974,Astron. Astrophys. 31, 189.

    Google Scholar 

  • Leka, K. D.: 1993, presented at the 24th Meeting ofthe AAS Solar Phys. Div., Palo Alto, Calif.

  • Lepping, R. P., Jones, J. A., and Burlaga, L. F.: 1990,J. Geophys. Res. 95, 11957.

    Google Scholar 

  • Leroy, J. L.: 1989, in E. Priest (ed.),Dynamics and Structure of Quiescent Solar Prominences, Kluwer Academic Publishers, Dordrecht, Holland, p. 77.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Bréchot, S.: 1983,Solar Phys. 83, 135.

    Google Scholar 

  • Leroy, J. L., Bommier, V., and Sahal-Bréchot, S.: 1984,Astron. Astrophys. 131, 33.

    Google Scholar 

  • Liggett, M. and Zirin, H.: 1984,Solar Phys. 91, 259.

    Google Scholar 

  • Livi, S. H. B., Martin, S., Wang, H., and Ai, G.: 1989,Solar Phys. 121, 197.

    Google Scholar 

  • Low, B. C.: 1993,Astrophys. J. 409, 798.

    Google Scholar 

  • Lundquist, S.: 1950,Arkiv Fysik 2, 361.

    Google Scholar 

  • Malherbe, J. M.: 1989, in E. Priest (ed.),Dynamics and Structure of Quiescent Solar Prominences, Kluwer Academic Publishers, Dordrecht, Holland, p. 115.

    Google Scholar 

  • Malherbe, J. M., Schmieder, B. M., and Mein, P.: 1981,Astron. Astrophys. 102, 124.

    Google Scholar 

  • Malherbe, J.M., Schmieder, B. M., Ribes, E., and Mein, P.: 1983,Astron. Astrophys. 119, 197.

    Google Scholar 

  • Martin, S. F.: 1986, in A. I. Poland (ed.),Coronal and Prominence Plasmas, NASA Conf. Publ. 2442, p. 73.

  • Martin, S. F.: 1990, in ‘Dynamics of Quiescent Prominences’,Proc. IAU Colloq. 117, Lecture Notes in Physics 363, 1.

    Google Scholar 

  • Martin, S. F., Livi, S. H. B., and Wang, J.-X.: 1985,Australian J. Phys. 38, 929.

    Google Scholar 

  • Martin, S. F., Bilimoria, R., and Tracadas, P. W.: 1994, in R. J. Rutten and C. J. Schrijver (eds.),Solar Surface Magnetisms, Springer-Verlag, New York, p. 303.

    Google Scholar 

  • Martin, S. F., Marquette, W. H., and Bilimoria, R.: 1992, in K. Harvey (ed.),The Solar Cycle, Astron. Soc. Pacific Conf. 27, 53.

    Google Scholar 

  • McIntosh, P. S.: 1992, in K. Harvey (ed.),The Solar Cycle, Astron. Soc. Pacific Conf. 27, 22.

    Google Scholar 

  • Moore, R. L. and Roumeliotis, G.: 1992, in Z. Švestka, B. V. Jackson, and M. E. Machado (eds.),Eruptive Solar Flares, Lecture Notes in Physics,399, 69.

    Google Scholar 

  • Murty, G. S.: 1961,Arkiv Fysik 21, No. 18, 361.

    Google Scholar 

  • Newcomb, W. A.: 1960,Ann. Phys. 10, 232.

    Google Scholar 

  • Poland, A. I.: 1986,Coronal and Prominence Plasmas, NASA Conf. Publ. 2442, Nat. Aerospace Admin., Washington, DC.

    Google Scholar 

  • Priest, E. (ed.): 1989,Dynamics and Structure of Quiescent Solar Prominences, Kluwer Academic Publishers, Dordrecht, Holland.

    Google Scholar 

  • Raadu, M. A.: 1971,Solar Phys. 22, 425.

    Google Scholar 

  • Rompolt, B.: 1990,Hvar Obs. Bull. 14, 37.

    Google Scholar 

  • Rust, D. M.: 1967,Astrophys. J. 150, 313.

    Google Scholar 

  • Rust, D. M. and Martin, S. F.: 1994, presented at14th NSO/SP Summer Workshop: Solar Active Region Evolution - Comparing Models with Observations, National Solar Observatory, Sunspot, NM.

    Google Scholar 

  • Ruždjak, V. and Tandberg-Hanssen, E. (eds.): 1990,Dynamics of Quiescent Prominences, Lecture Notes in Physics 363, Springer-Verlag, New York.

    Google Scholar 

  • Seehafer, N.: 1990,Solar Phys. 125, 219.

    Google Scholar 

  • Shibata, K., Tajima, T., and Steinolfson, R. S.: 1989,Astrophys. J. 345, 584.

    Google Scholar 

  • Stix, M.: 1989,The Sun, Springer-Verlag, Berlin, p. 282.

    Google Scholar 

  • Tanaka, K.: 1991,Solar Phys. 136, 133.

    Google Scholar 

  • Taylor, J. B.: 1974,Phys. Rev. Letters 33, 1139.

    Google Scholar 

  • Taylor, J. B.: 1986,Rev. Mod. Phys. 58, 741.

    Google Scholar 

  • Taylor, J. B.: 1992, in H. K. Moffattet al. (eds.),Topological Aspects of the Dynamics of Fluids and Plasmas, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, Holland, p. 151.

    Google Scholar 

  • van Ballegooijen, A. A. and Martens, P. C. H.: 1989,Astrophys. J. 343, 971.

    Google Scholar 

  • van Ballegooijen, A. A. and Martens, P. C. H.: 1990,Astrophys. J. 361, 283.

    Google Scholar 

  • Voslamber, D. and Callebaut, D. K.: 1962,Phys. Rev. 128, 2016.

    Google Scholar 

  • Vršnak, B.: 1990,Solar Phys. 129, 295.

    Google Scholar 

  • Vršnak, B., Ruždjak, V., and Rompolt, B.: 1991,Solar Phys. 136, 151.

    Google Scholar 

  • Vršnak, B., Ruždjak, V., Brajša, R., and Dzubur, A.: 1988,Solar Phys. 116, 45.

    Google Scholar 

  • Yang, H.-S., Hong, Q. F., and Ding, Y. J.: 1988,Solar Phys. 117, 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rust, D.M., Kumar, A. Helical magnetic fields in filaments. Sol Phys 155, 69–97 (1994). https://doi.org/10.1007/BF00670732

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00670732

Keywords

Navigation