Skip to main content
Log in

Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L−1, which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekiesch, P., Basitta, P., and Apel, A.K. (2016). Challenges in the heterologous production of antibiotics in Streptomyces. Arch Pharm Chem Life Sci 349, 594–601.

    Article  CAS  Google Scholar 

  • Chao, R., Yuan, Y.B., and Zhao, H.M. (2015). Building biological foundries for next-generation synthetic biology. Sci China Life Sci 58, 658–665.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Smanski, M.J., and Shen, B. (2010). Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86, 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, X., Zhen, Z., and Tang, Z. (2012). Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus. J Bioproces Biotechniq 2, 1–4.

    Article  Google Scholar 

  • Doyle, D., McDowall, K.J., Butler, M.J., and Hunter, I.S. (1991). Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol 5, 2923–2933.

    Article  CAS  PubMed  Google Scholar 

  • Gadakh, B., and Van Aerschot, A. (2015). Renaissance in antibiotic discovery: some novel approaches for finding drugs to treat bad bugs. Curr Med Chem 22, 2140–2158.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth 6, 343–345.

    Article  CAS  Google Scholar 

  • Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., Hopwood, D. A. (2000). Practical Streptomyces Genetics (Norwich: The John Innes Foundation).

  • Mak, S., Xu, Y., and Nodwell, J.R. (2014). The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol Microbiol 93, 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Malla, S., Niraula, N.P., Liou, K., and Sohng, J.K. (2010). Self-resistance mechanism in Streptomyces peucetius: Overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res 165, 259–267.

    Article  CAS  PubMed  Google Scholar 

  • McDowall, K.J., Thamchaipenet, A., and Hunter, I.S. (1999). Phosphate control of oxytetracycline production by Streptomyces rimosus is at the level of transcription from promoters overlapped by tandem repeats similar to those of the DNA-binding sites of the OmpR family. J Bacteriol 181, 3025–3032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, G., Chater, K.F., Tian, Y., Zhang, J., and Tan, H. (2016). Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp.. FEMS Microbiol Rev 40, 554–573.

    Article  PubMed  Google Scholar 

  • Niu, G.Q., and Tan, H.R. (2013). Biosynthesis and regulation of secondary metabolites in microorganisms. Sci China Life Sci 56, 581–583.

    Article  PubMed  Google Scholar 

  • Paulsen, I.T., Brown, M.H., and Skurray, R.A. (1996). Proton-dependent multidrug efflux systems. Microbiol Rev 60, 575–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pethick, F.E., Macfadyen, A.C., Tang, Z., Sangal, V., Liu, T.T., Chu, J., Kosec, G., Petkovic, H., Guo, M., Kirby, R., Hoskisson, P.A., Herron, P.R., and Hunter, I.S. (2013). Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970. Genome Announc 1, e00063–00013.

    Article  PubMed Central  Google Scholar 

  • Petkovic, H., Cullum, J., Hranueli, D., Hunter, I.S., Peric-Concha, N., Pigac, J., Thamchaipenet, A., Vujaklija, D., and Long, P.F. (2006). Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 70, 704–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickens, L.B., and Tang, Y. (2010). Oxytetracycline biosynthesis. J Biol Chem 285, 27509–27515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, M.C., and Schwarz, S. (2009). Tetracycline and Chloramphenicol Resistance Mechanisms: Antimicrobial Drug Resistance, Douglas L, and Mayers MD, ed. (New York: Springer), pp. 183–193.

  • Tang, Z., Xiao, C., Zhuang, Y., Chu, J., Zhang, S., Herron, P.R., Hunter, I.S., and Guo, M. (2011). Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microbial Tech 49, 17–24.

    Article  Google Scholar 

  • Wang, W., Li, X., Wang, J., Xiang, S., Feng, X., and Yang, K. (2013). An engineered strong promoter for Streptomycetes. Appl Environ Microbiol 79, 4484–4492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, S., Li, Z., Wang, X., Wang, H., Jia, X., Ai, G., Bai, Z., Shi, M., Yuan, F., Liu, T., Wang, W., and Yang, K. (2016). Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl Microbiol Biotechnol 100, 10563–10572.

    Article  CAS  PubMed  Google Scholar 

  • Yin, S., Wang, W., Wang, X., Zhu, Y., Jia, X., Li, S., Yuan, F., Zhang, Y., and Yang, K. (2015). Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Fact 14, 1–12.

    Article  CAS  Google Scholar 

  • Yu, L., Yan, X., Wang, L., Chu, J., Zhuang, Y., Zhang, S., and Guo, M. (2012). Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol 12, 1–12.

    Article  Google Scholar 

  • Zhang, B., Yang, D., Yan, Y., Pan, G., Xiang, W., and Shen, B. (2016). Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins. Appl Microbiol Biotechnol 100, 2267–2277.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Meijin Guo (East China University of Science and Technology) for providing S. rimosus M4018. This work was supported by funding from Shengxue Dacheng Pharmaceutical Co., Ltd, National Natural Science Foundation of China (31400034 and 31570031) and the Ministry of Science and Technology of China (2013CB734001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiu Zhang, Keqiang Fan or Zilong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Wang, X., Shi, M. et al. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus . Sci. China Life Sci. 60, 992–999 (2017). https://doi.org/10.1007/s11427-017-9121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9121-4

Keywords

Navigation