Skip to main content
Log in

Current and future editing reagent delivery systems for plant genome editing

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Many genome editing tools have been developed and new ones are anticipated; some have been extensively applied in plant genetics, biotechnology and breeding, especially the CRISPR/Cas9 system. These technologies have opened up a new era for crop improvement due to their precise editing of user-specified sequences related to agronomic traits. In this review, we will focus on an update of recent developments in the methodologies of editing reagent delivery, and consider the pros and cons of current delivery systems. Finally, we will reflect on possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alagoz, Y., Gurkok, T., Zhang, B., and Unver, T. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6, 30910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainley, W.M., Sastry-Dent, L., Welter, M.E., Murray, M.G., Zeitler, B., Amora, R., Corbin, D.R., Miles, R.R., Arnold, N.L., Strange, T.L., Simpson, M.A., Cao, Z., Carroll, C., Pawelczak, K.S., Blue, R., West, K., Rowland, L.M., Perkins, D., Samuel, P., Dewes, C.M., Shen, L., Sriram, S., Evans, S.L., Rebar, E.J., Zhang, L., Gregory, P.D., Urnov, F.D., Webb, S.R., and Petolino, J.F. (2013). Trait stacking via targeted genome editing. Plant Biotechnol J 11, 1126–1134.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Abul-faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N.J., Voytas, D.F., Dinesh-Kumar, S., and Mahfouz, M.M. (2015). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8, 1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cárdenas, M.L., Tricoli, D.M., Van Eck, J., Voytas, D.F., Walbot, V., Wang, K., Zhang, Z.J., and Stewart, C.N. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, M., Turesson, H., Nicolia, A., Fält, A.S., Samuelsson, M., and Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36, 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Baltes, N.J., Gil-Humanes, J., Cermak, T., Atkins, P.A., and Voytas, D.F. (2014). DNA replicons for plant genome engineering. Plant Cell 26, 151–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj, K., Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beetham, P.R., Kipp, P.B., Sawycky, X.L., Arntzen, C.J., and May, G.D. (1999). A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96, 8774–8778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi, L., and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33, 41–52.

    Article  CAS  Google Scholar 

  • Brooks, C., Nekrasov, V., Lippman, Z.B., and Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166, 1292–1297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler, N.M., Atkins, P.A., Voytas, D.F., and Douches, D.S. (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10, e0144591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., and Hou, W. (2015). CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10, e0136064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai, C.Q., Doyon, Y., Ainley, W.M., Miller, J.C., Dekelver, R.C., Moehle, E.A., Rock, J.M., Lee, Y.L., Garrison, R., Schulenberg, L., Blue, R., Worden, A., Baker, L., Faraji, F., Zhang, L., Holmes, M.C., Rebar, E.J., Collingwood, T.N., Rubin-Wilson, B., Gregory, P.D., Urnov, F.D., and Petolino, J.F. (2009). Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69, 699–709.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M.X., Huang, J.Q., Yao, Q.H., Liu, S.J., Wang, C.L., and Wei, Z.M. (2006). Site-specific DNA excision in transgenic rice with a cell-permeable cre recombinase. Mol Biotechnol 32, 055–064.

    Article  CAS  Google Scholar 

  • Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y., and Voytas, D.F. (2015). High-frequency, precise modification of the tomato genome. Genome Biol 16, 232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17, 1140–1153.

    Article  CAS  PubMed  Google Scholar 

  • Char, S.N., Unger-Wallace, E., Frame, B., Briggs, S.A., Main, M., Spalding, M.H., Vollbrecht, E., Wang, K., and Yang, B. (2015). Heritable sitespecific mutagenesis using TALENs in maize. Plant Biotechnol J 13, 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, A., Eudes, F., and Shim, Y.S. (2010). Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62, 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Clasen, B.M., Stoddard, T.J., Luo, S., Demorest, Z.L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E.E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N.J., Mathis, L., Voytas, D.F., and Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Cole-Strauss, A., Yoon, K., Xiang, Y., Byrne, B.C., Rice, M.C., Gryn, J., Holloman, W.K., and Kmiec, E.B. (1996). Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273, 1386–1389.

    Article  CAS  PubMed  Google Scholar 

  • Curtin, S.J., Zhang, F., Sander, J.D., Haun, W.J., Starker, C., Baltes, N.J., Reyon, D., Dahlborg, E.J., Goodwin, M.J., Coffman, A.P., Dobbs, D., Joung, J.K., Voytas, D.F., and Stupar, R.M. (2011). Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156, 466–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Pater, S., Neuteboom, L.W., Pinas, J.E., Hooykaas, P.J.J., and van der Zaal, B.J. (2009). ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. Plant Biotech J 7, 821–835.

    Article  CAS  Google Scholar 

  • de Pater, S., Pinas, J.E., Hooykaas, P.J.J., and van der Zaal, B.J. (2013). ZFNmediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11, 510–515.

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. (2003). Virus-induced gene silencing. Methods Mol Biol 236, 287–294.

    CAS  PubMed  Google Scholar 

  • Dong, C., Beetham, P., Vincent, K., and Sharp, P. (2006). Oligonucleotidedirected gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25, 457–465.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Jin, J., Yan, M., and Lu, Y. (2012). Synthetic nanocarriers for intracellular protein delivery. Curr Drug Metab 13, 82–92.

    Article  CAS  PubMed  Google Scholar 

  • Du, H., Zeng, X., Zhao, M., Cui, X., Wang, Q., Yang, H., Cheng, H., and Yu, D. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotech 217, 90–97.

    Article  CAS  Google Scholar 

  • English, J., Davenport, G., Elmayan, T., Vaucheret, H., and Baulcombe, D. (1997). Requirement of sense transcription for homology-dependent virus resistance and trans-inactivation. Plant J 12, 597–603.

    Article  CAS  Google Scholar 

  • Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., and Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5, 12217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79, 348–359.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., and Zhu, J.K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23, 1229–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., Zeng, L., Liu, X., and Zhu, J.K. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111, 4632–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forner, J., Pfeiffer, A., Langenecker, T., Manavella, P.A., Manavella, P., and Lohmann, J.U. (2015). Germline-transmitted genome editing in Arabidopsis thaliana using TAL-effector-nucleases. PLoS ONE 10, e0121056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forsyth, A., Weeks, T., Richael, C., and Duan, H. (2016). Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7, 1572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., and Xia, Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87, 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67, 16–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sánchez-León, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., and Voytas, D.F. (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89, 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, M., DeKelver, R.C., Palta, A., Clifford, C., Gopalan, S., Miller, J.C., Novak, S., Desloover, D., Gachotte, D., Connell, J., Flook, J., Patterson, T., Robbins, K., Rebar, E.J., Gregory, P.D., Urnov, F.D., and Petolino, J.F. (2012). Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotech J 10, 783–791.

    Article  CAS  Google Scholar 

  • Gurushidze, M., Hensel, G., Hiekel, S., Schedel, S., Valkov, V., and Kumlehn, J. (2014). True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 9, e92046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartung, F., and Schiemann, J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78, 742–752.

    Article  CAS  PubMed  Google Scholar 

  • Haun, W., Coffman, A., Clasen, B.M., Demorest, Z.L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D.F., and Zhang, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12, 934–940.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.W., Lee, H.J., Tolliver, L.M., and Aronstam, R.S. (2015). Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BioMed Res Int 2015, 1–16.

    Google Scholar 

  • Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., and Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467, 76–82.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, T.B., LaFayette, P.R., Schmitz, R.J., and Parrott, W.A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15, 16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen, S.P., Febres, V.J., and Moore, G.A. (2014). Cell penetrating peptides as an alternative transformation method in citrus. J Citrus Pathol 1, 10.15.

    Google Scholar 

  • Jia, H., and Wang, N. (2014a). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9, e93806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia, H., and Wang, N. (2014b). Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33, 1993–2001.

    Article  CAS  PubMed  Google Scholar 

  • Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB1.3 infection. Plant Biotechnol J 14, 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W.Z., Yang, B., and Weeks, D.P. (2014). Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9, e99225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung, J.H., and Altpeter, F. (2016). TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92, 131–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapila, J., De Rycke, R., Van Montagu, M., and Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122, 101–108.

    Article  CAS  Google Scholar 

  • Kelley, M.L., Strezoska,, He, K., Vermeulen, A., and Smith, A.B. (2016). Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotech 233, 74–83.

    Article  CAS  Google Scholar 

  • Kumagai, M.H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L.K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92, 1679–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., Uauy, C., and Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16, 258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M., and Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Stoddard, T.J., Demorest, Z.L., Lavoie, P.O., Luo, S., Clasen, B.M., Cedrone, F., Ray, E.E., Coffman, A.P., Daulhac, A., Yabandith, A., Retterath, A.J., Mathis, L., Voytas, D.F., D’Aoust, M.A., and Zhang, F. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnol J 14, 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Liu, B., Spalding, M.H., Weeks, D.P., and Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30, 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Liu, B., Chen, C.Y., and Yang, B. (2016). TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide- resistant rice. J Genet Genomics 43, 297–305.

    Article  PubMed  Google Scholar 

  • Li, Z., Liu, Z.B., Xing, A., Moon, B.P., Koellhoffer, J.P., Huang, L., Ward, R.T., Clifton, E., Falco, S.C., and Cigan, A.M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169, 960–970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41, 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102, 2232–2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lor, V.S., Starker, C.G., Voytas, D.F., Weiss, D., and Olszewski, N.E. (2014). Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 166, 1288–1291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P.M., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, S.C., RegisterIII, J.C., Zhao, Z.Y., Xu, D., Jones, T.J., and Gordon-Kamm, W.J. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.

    Article  CAS  PubMed Central  Google Scholar 

  • Luo, S., Li, J., Stoddard, T.J., Baltes, N.J., Demorest, Z.L., Clasen, B.M., Coffman, A., Retterath, A., Mathis, L., Voytas, D.F., and Zhang, F. (2015). Non-transgenic plant genome editing using purified sequence- specific nucleases. Mol Plant 8, 1425–1427.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z., and Liu, Y.G. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicotplants. Mol Plant 8, 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz, M.M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., and Zhu, J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108, 2623–2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R., and Nagamangala Kanchiswamy, C. (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7, 1904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., and Zhu, J.K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6, 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Ortigosa, S., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., and Wang, K. (2012). Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22, 3576–3582.

    Article  CAS  Google Scholar 

  • Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., Lyznik, L.A., and Wang, K. (2014). Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164, 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., Ovadis, M., Tzfira, T., and Vainstein, A. (2010). Nontransgenic genome modification in plant cells. Plant Physiol 154, 1079–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., and Qu, L.J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23, 1233–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami, M., Toki, S., and Endo, M. (2015). Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88, 561–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami, M., Toki, S., and Endo, M. (2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57, 1058–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G., and Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691–693.

    Article  CAS  PubMed  Google Scholar 

  • Nicolia, A., Proux-Wéra, E., Åhman, I., Onkokesung, N., Andersson, M., Andreasson, E., and Zhu, L.H. (2015). Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotech 204, 17–24.

    Article  CAS  Google Scholar 

  • Okuzaki, A., and Toriyama, K. (2004). Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22, 509–512.

    Article  CAS  PubMed  Google Scholar 

  • Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107, 12034–12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, J.W., and Qi, Y. (2016). CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35, 1417–1427.

    Article  CAS  PubMed  Google Scholar 

  • Peer, R., Rivlin, G., Golobovitch, S., Lapidot, M., Gal-On, A., Vainstein, A., Tzfira, T., and Flaishman, M.A. (2015). Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241, 941–951.

    Article  CAS  PubMed  Google Scholar 

  • Petolino, J.F. (2015). Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol-Plant 51, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M., and Mahfouz, M.M. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13, 578–589.

    Article  CAS  PubMed  Google Scholar 

  • Popat, A., Hartono, S.B., Stahr, F., Liu, J., Qiao, S.Z., and Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3, 2801–2818.

    Article  CAS  PubMed  Google Scholar 

  • Pratt, S. Growers to see new HT canola in 2016. The Western Producer. 2012-05-28. http://www.producer.com/2014/03/growers-to-see-new-htcanola-in-2016/.

    Google Scholar 

  • Qi, Y., Zhang, Y., Zhang, F., Baller, J.A., Cleland, S.C., Ryu, Y., Starker, C.G., and Voytas, D.F. (2013a). Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, Y., Li, X., Zhang, Y., Starker, C.G., Baltes, N.J., Zhang, F., Sander, J.D., Reyon, D., Joung, J.K., and Voytas, D.F. (2013b). Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 3, 1707–1715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raitskin, O., and Patron, N.J. (2016). Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotech 37, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Rakoczy-Trojanowska, M. (2002). Alternative methods of plant transformation: a short review. Cell Mol Biol Lett 7, 849–858.

    PubMed  Google Scholar 

  • Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., and Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6, 32289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldo, A.R., and Ayliffe, M. (2015). Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breeding 35, 40.

    Article  CAS  Google Scholar 

  • Sauer, N.J., Narváez-Vásquez, J., Mozoruk, J., Miller, R.B., Warburg, Z.J., Woodward, M.J., Mihiret, Y.A., Lincoln, T.A., Segami, R.E., Sanders, S.L., Walker, K.A., Beetham, P.R., Schöpke, C.R., and Gocal, G.F.W. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170, 1917–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer, S.M., and Nakata, P.A. (2015). CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240, 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Schiml, S., Fauser, F., and Puchta, H. (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80, 1139–1150.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D.F., Zheng, X., Zhang, Y., and Gao, C. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., and Gao, C. (2013b). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686–688.

    Article  CAS  PubMed  Google Scholar 

  • Shan, Q., Zhang, Y., Chen, K., Zhang, K., and Gao, C. (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13, 791–800.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H., and Habben, J.E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, V.K., Doyon, Y., Miller, J.C., DeKelver, R.C., Moehle, E.A., Worden, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Zhifang, G., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D., and Urnov, F.D. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Stoddard, T.J., Clasen, B.M., Baltes, N.J., Demorest, Z.L., Voytas, D.F., Zhang, F., and Luo, S. (2016). Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA. PLoS ONE 11, e0154634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugano, S.S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., and Kohchi, T. (2014). CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.. Plant Cell Physiol 55, 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., and Xi, Y. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5, 10342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Svitashev, S., Young, J.K., Schwartz, C., Gao, H., Falco, S.C., and Cigan, A.M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169, 931–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7, 13274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torney, F., Trewyn, B.G., Lin, V.S.Y., and Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2, 295–300.

    Article  CAS  Google Scholar 

  • Tovkach, A., Zeevi, V., and Tzfira, T. (2009). A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J 57, 747–757.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K., and Voytas, D.F. (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 3, 2233–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vainstein, A., Marton, I., Zuker, A., Danziger, M., and Tzfira, T. (2011). Permanent genome modifications in plant cells by transient viral vectors. Trends Biotech 29, 363–369.

    Article  CAS  Google Scholar 

  • Voytas, D.F., and Gao, C. (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12, e1001877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., and Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34, 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016). In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17, 626.

    Article  PubMed Central  CAS  Google Scholar 

  • Wang, M., Liu, Y., Zhang, C., Liu, J., Liu, X., Wang, L., Wang, W., Chen, H., Wei, C., Ye, X., Li, X., and Tu, J. (2015). Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10, e0122755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16, 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weeks, D.P., Spalding, M.H., and Yang, B. (2016). Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14, 483–495.

    Article  CAS  PubMed  Google Scholar 

  • Wendt, T., Holm, P.B., Starker, C.G., Christian, M., Voytas, D.F., Brinch-Pedersen, H., and Holme, I.B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Weinthal, D., Tovkach, A., Zeevi, V., and Tzfira, T. (2010). Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 15, 308–321.

    Article  CAS  PubMed  Google Scholar 

  • Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162–1164.

    Article  CAS  PubMed  Google Scholar 

  • Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D., and Voytas, D.F. (2005). Highfrequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Xie, K., and Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6, 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570–3575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., and Chen, Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., and Yang, J. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, L., Wei, S., Wu, Y., Hu, R., Li, H., Yang, W., and Xie, Q. (2015). Highefficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8, 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  • Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A.Y.L., and Liu, Y. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5, 14926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, K., Cole-Strauss, A., and Kmiec, E.B. (1996). Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci USA 93, 2071–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Maeder, M.L., Unger-Wallace, E., Hoshaw, J.P., Reyon, D., Christian, M., Li, X., Pierick, C.J., Dobbs, D., Peterson, T., Joung, J.K., and Voytas, D.F. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107, 12028–12033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., and Zhu, J.K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12, 797–807.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Gou, F., Zhang, J., Liu, W., Li, Q., Mao, Y., Botella, J.R., and Zhu, J.K. (2016). TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J., and Voytas, D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161, 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7, 12617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H., and Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42, 10903–10914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, T., Peterson, D.J., Tagliani, L., St. Clair, G., Baszczynski, C.L., and Bowen, B. (1999). Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96, 8768–8773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, T., Mettenburg, K., Peterson, D.J., Tagliani, L., and Baszczynski, C.L. (2000). Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18, 555–558.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yidong Ran or Caixia Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Y., Liang, Z. & Gao, C. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490–505 (2017). https://doi.org/10.1007/s11427-017-9022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9022-1

Keywords

Navigation