Skip to main content
Log in

Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Oligonucleotide-directed gene repair is a potential technique for agricultural trait modification in economically important crops. However, large variation in the repair frequencies among the scientific reports indicates that there are many factors influencing the repair process. We report here a transient assay system using GFP as a reporter for testing the efficiency of plasmid DNA repair in cultured wheat cells. This assay showed that osmotic medium supplemented with 2,4-D increased the oligo-targeting frequency, and that the repair of a point mutation was more efficient than repair of a single base deletion mutation in cultured scutellum cells of immature wheat embryos. This study provides the first evidence that oligonucleotide-directed mutagenesis is applicable to regenerable cultured wheat scutellum cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D :

2,4-dichlorophenoxyacetic acid·

GFP :

green fluorescent protein

RDO :

RNA/DNA oligonucleotide

SDO :

single-stranded DNA oligonucleotide

References

  • Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K (2000) Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA–DNA oligonucleotide. Nat Biotechnol 18:43–47

    Article  PubMed  CAS  Google Scholar 

  • Alexeev V, Igoucheva O, Yoon K (2002) Simultaneous targeted alteration of the tyrosinase and c-kit genes by single-stranded oligonucleotides. Gene Ther 9:1667–1675

    Article  PubMed  CAS  Google Scholar 

  • Alexeev V, Yoon K (1998) Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA–DNA oligonucleotide. Nat Biotechnol 16:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Bartlett RJ, Stockinger S, Denis MM, Bartlett WT, Inverardi L, Le TT, Man NT, Morris GE, Bogan DJ, Metcalf-Bogan J, Kornegay JN (2000) In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat Biotechnol 18:615–622

    Article  PubMed  CAS  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778

    Article  PubMed  CAS  Google Scholar 

  • Brachman EE, Kmiec EB (2004) DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells. J Cell Sci 117:3867–3874

    Article  PubMed  CAS  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 2:90–95

    Article  Google Scholar 

  • Cole-Strauss A, Yoon KG, Xiang YF, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB (1996) Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide. Science 273:1386–1389

    Article  PubMed  CAS  Google Scholar 

  • Cole-Strauss A, Gamper H, Holloman WK, Munoz M, Cheng N, Kmiec EB (1999) Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res 27:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Dekker M, Brouwers C, Riele HT (2003) Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res 31:E27

    Article  PubMed  Google Scholar 

  • Drury MD, Kmiec EB (2003) DNA pairing is an important step in the process of targeted nucleotide exchange. Nucleic Acids Res 31:899–910

    Article  PubMed  CAS  Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:473–482

    CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Gamper HB, Cole-Strauss A, Metz R, Parekh H, Kumar R, Kmiec EB (2000a) A plausible mechanism for gene correction by chimeric oligonucleotides. Biochemistry 39:5808–5816

    Article  PubMed  CAS  Google Scholar 

  • Gamper HB, Parekh H, Rice MC, Bruner M, Youkey H, Kmiec EB (2000b) The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 28:4332–4339

    Article  PubMed  CAS  Google Scholar 

  • Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6:157–162

    Article  PubMed  CAS  Google Scholar 

  • Hohn B, Puchta H (1999) Gene therapy in plants. Proc Natl Acad Sci USA 96:8321–8323

    Article  PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Yoon K (2001) Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther 8:391–399

    Article  PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Yoon K (2002) Nuclear extracts promote gene correction and strand pairing of oligonucleotides to the homologous plasmid. Antisense Nucleic Acid Drug Dev 12:235–246

    Article  PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Pryce M, Yoon K (2003) Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res 31:2659–2670

    Article  PubMed  CAS  Google Scholar 

  • Igoucheva O, Alexeev V, Yoon K (2004) Oligonucleotide-directed mutagenesis and targeted gene correction: A mechanistic point of view. Curr Mol Med 4:445–463

    Article  PubMed  CAS  Google Scholar 

  • Kemper EL, Silva MJD, Arruda P (1996) Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Sci 121:85–93

    Article  Google Scholar 

  • Kmiec EB, Johnson C, May GD (2001) Chloroplast lysates support directed mutagenesis via modified DNA and chimeric RNA/DNA oligonucleotides. Plant J 27:267–274

    Article  PubMed  CAS  Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184

    Article  PubMed  CAS  Google Scholar 

  • Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ (1997) Targeted nucleotide exchange in the alkaline phosphatase gene of Huh-7 cells mediated by a chimeric RNA/DNA oligonucleotide. Hepatology 25:1462–1468

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Rice MC, Kmiec EB (2001) In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res 29:4238–4250

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Cheng SQ, van Brabant AJ, Kmiec EB (2002a) Rad51p and Rad54p, but not Rad52p, elevate gene repair in Saccharomyces cerevisiae directed by modified single-stranded oligonucleotide vectors. Nucleic Acids Res 30:2742–2750

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Rice MC, Drury M, Cheng SQ, Gamper H, Kmiec EB (2002b) Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 22:3852–3863

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Maguire KK, Kmiec EB (2004) Genetic re-engineering of Saccharomyces cerevisiae RAD51 leads to a significant increase in the frequency of gene repair in vivo. Nucleic Acids Res 32:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Moerschell RP, Tsunasawa S, Sherman F (1988) Transformation of yeast with synthetic oligonucleotides. Proc Natl Acad Sci USA 85:524–528

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nickerson HD, Colledge WH (2003) A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Ther 10:1584–1591

    Article  PubMed  CAS  Google Scholar 

  • Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22:509–512

    Article  PubMed  CAS  Google Scholar 

  • Pang S, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MAW, Fromm ME (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112:893–900

    Article  PubMed  CAS  Google Scholar 

  • Parekh-Olmedo H, Krainc D, Kmiec EB (2002) Targeted gene repair and its application to neurodegenerative disorders. Neuron 33:495–498

    Article  PubMed  CAS  Google Scholar 

  • Pierce EA, Liu Q, Igoucheva O, Omarrudin R, Ma H, Diamond SL, Yoon K (2003) Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Ther 10:24–33

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–182

    Article  PubMed  CAS  Google Scholar 

  • Rice MC, May GD, Kipp PB, Parekh H, Kmiec EB (2000) Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiol 123:427–437

    Article  PubMed  CAS  Google Scholar 

  • Rice MC, Czymmek K, Kmiec EB (2001) The potential of nucleic acid repair in functional genomics. Nat Biotechnol 19:321–326

    Article  PubMed  CAS  Google Scholar 

  • Ruiter R, Brande IVB, Stals E, Delaure S, Cornelissen M, D’Halluin K (2003) Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol Biol 53:675–689

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Hager GL (1997) Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem 272:27493–27496

    CAS  Google Scholar 

  • Thorpe PH, Stevenson BJ, Porteous DJ (2002) Functional correction of episomal mutations with short DNA fragments and RNA–DNA oligonucleotides. J Gene Med 4:195–204

    Article  PubMed  CAS  Google Scholar 

  • van der Steege G, Schuilenga-Hut PHL, Buys C, Scheffer H, Pas HH, Jonkman MF (2001) Persistent failures in gene repair. Nat Biotechnol 19:305–306

    Article  PubMed  CAS  Google Scholar 

  • Wernicke W, Milkovits L (1987) Effect of auxin on the mitotic cell cycle in cultured leaf segments at different stages of development in wheat. Physiol Plant 69:16–22

    Article  CAS  Google Scholar 

  • Yamamoto T, Moerschell RP, Wakem LP, Komar-Panicucci S, Sherman F (1992) Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131:811–819

    PubMed  CAS  Google Scholar 

  • Yoon K, Cole-Strauss A, Kmiec EB (1996) Targeted gene correction of episomal DNA in mammalian cell mediated by a chimeric RNA/DNA oligonucleotide. Proc Natl Acad Sci USA 93:2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Greg Gocal, Keith Walker and Christian Schopke (Cibus Genetics LLC, USA) and Dr Harbans Bariana (University of Sydney) for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmei Dong.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Beetham, P., Vincent, K. et al. Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25, 457–465 (2006). https://doi.org/10.1007/s00299-005-0098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0098-x

Keywords

Navigation