Skip to main content
Log in

Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal-free room-temperature phosphorescence (RTP) materials have the characteristics of large Stokes shift, long lifetime, and triplet state transition. They exhibit application potential in various fields, such as bioimaging, computer display, sensor, and anti-counterfeiting and have drawn much research interest. Recent work showed that manipulating intermolecular interactions (e.g., crystallization, polymerization, and rigid matrix) and host-guest assembly to restrain nonradiative transitions and isolate phosphor from oxygen as much as possible is a feasible way to obtain various types of efficient RTP materials. In some cases, intermolecular interactions also facilitated RTP emission by regulating the triplet state. On the other hand, heavy atoms (Br, I, etc.), heteroatoms (N, O, S, etc.), or carbonyls were introduced to the molecular skeleton through molecular engineering to enhance intersystem crossing, which is important for populating the triplet exciton. By comprehensively using the aforesaid strategies, great progress has been made for RTP materials. In this mini-review, we summarized recent advances in organic RTP materials based on manipulating intermolecular interactions. Typical host-guest assembly, hydrogen-bond assembly, energy transfer process, and exciplex emission system-based RTP materials were well illustrated. In summary, the current challenges and prospects for development in this field were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis GN, Kasha M. J Am Chem Soc, 1944, 66: 2100–2116

    Article  CAS  Google Scholar 

  2. Ma X, Xu C, Wang J, Tian H. Angew Chem Int Ed, 2018, 57: 10854–10858

    Article  CAS  Google Scholar 

  3. Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL. J Am Chem Soc, 2007, 129: 8942–8943

    Article  CAS  Google Scholar 

  4. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  Google Scholar 

  5. Schulman EM, Walling C. Science, 1972, 178: 53–54

    Article  CAS  Google Scholar 

  6. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Nature, 1998, 395: 151–154

    Article  CAS  Google Scholar 

  7. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR. Appl Phys Lett, 1999, 75: 4–6

    Article  CAS  Google Scholar 

  8. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. Nature, 2009, 459: 234–238

    Article  CAS  Google Scholar 

  9. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Cancer Res, 2010, 70: 4490–4498

    Article  CAS  Google Scholar 

  10. Rumsey WL, Vanderkooi JM, Wilson DF. Science, 1988, 241: 1649–1651

    Article  CAS  Google Scholar 

  11. Zhao Q, Huang C, Li F. Chem Soc Rev, 2011, 40: 2508–2524

    Article  CAS  Google Scholar 

  12. Turro NJ. Modern Molecular Photochemistry. California: The Benjamin/Cummings Publishing Company, 1978

    Google Scholar 

  13. Zhang X, Du L, Zhao W, Zhao Z, Xiong Y, He X, Gao PF, Alam P, Wang C, Li Z, Leng J, Liu J, Zhou C, Lam JWY, Phillips DL, Zhang G, Tang BZ. Nat Commun, 2019, 10: 5161

    Article  Google Scholar 

  14. Bolton O, Lee K, Kim HJ, Lin KY, Kim J. Nat Chem, 2011, 3: 205–210

    Article  CAS  Google Scholar 

  15. Zhang G, Evans RE, Campbell KA, Fraser CL. Macromolecules, 2009, 42: 8627–8633

    Article  CAS  Google Scholar 

  16. Zhang G, Fiore GL, St. Clair TL, Fraser CL. Macromolecules, 2009, 42: 3162–3169

    Article  CAS  Google Scholar 

  17. Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder SR, Watanabe T, Adachi C. Adv Funct Mater, 2013, 23: 3386–3397

    Article  CAS  Google Scholar 

  18. Kwon MS, Lee D, Seo S, Jung J, Kim J. Angew Chem Int Ed, 2014, 53: 11177–11181

    Article  CAS  Google Scholar 

  19. Ye W, Ma H, Shi H, et al. Nat Mater, 2021, 20: 1539–1544

    Article  CAS  Google Scholar 

  20. Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas JN, Trindle CO, Luo Y, Zhang G. Angew Chem Int Ed, 2016, 55: 9872–9876

    Article  CAS  Google Scholar 

  21. Kuila S, Rao KV, Garain S, Samanta PK, Das S, Pati SK, Eswar-amoorthy M, George SJ. Angew Chem Int Ed, 2018, 57: 17115–17119

    Article  CAS  Google Scholar 

  22. Lin Z, Kabe R, Nishimura N, Jinnai K, Adachi C. Adv Mater, 2018, 30: 1803713

    Article  Google Scholar 

  23. Su Y, Phua SZF, Li Y, Zhou X, Jana D, Liu G, Lim WQ, Ong WK, Yang C, Zhao Y. Sci Adv, 2018, 4: aas9732

    Article  Google Scholar 

  24. Wang J, Gu X, Ma H, Peng Q, Huang X, Zheng X, Sung SHP, Shan G, Lam JWY, Shuai Z, Tang BZ. Nat Commun, 2018, 9: 2963

    Article  Google Scholar 

  25. Kenry, Chen C, Liu B. Nat Commun, 2019, 10: 2111

    Article  CAS  Google Scholar 

  26. Zhang T, Ma X, Wu H, Zhu L, Zhao Y, Tian H. Angew Chem Int Ed, 2020, 59: 11206–11216

    Article  CAS  Google Scholar 

  27. Mao Z, Yang Z, Xu C, Xie Z, Jiang L, Gu FL, Zhao J, Zhang Y, Aldred MP, Chi Z. Chem Sci, 2019, 10: 7352–7357

    Article  CAS  Google Scholar 

  28. Chen H, Yao X, Ma X, Tian H. Adv Opt Mater, 2016, 4: 1397–1401

    Article  CAS  Google Scholar 

  29. Gan N, Shi H, An Z, Huang W. Adv Funct Mater, 2018, 28: 1802657

    Article  Google Scholar 

  30. Wu H, Chi W, Chen Z, Liu G, Gu L, Bindra AK, Yang G, Liu X, Zhao Y. Adv Funct Mater, 2018, 29: 1807243

    Article  Google Scholar 

  31. Yang J, Fang M, Li Z. Acc Mater Res, 2021, 2: 644–654

    Article  CAS  Google Scholar 

  32. Gao H, Ma X. Aggregate, 2021, 2: e38

  33. Song J, Ma L, Sun S, Tian H, Ma X. Angew Chem Int Ed, 2022, 61: e202206157

    CAS  Google Scholar 

  34. Xu C, Yin C, Wu W, Ma X. Sci China Chem, 2021, 65: 75–81

    Article  Google Scholar 

  35. Zhang Q, Fan Y, Liao Q, Zhong C, Li Q, Li Z. Sci China Chem, 2022, 65: 918–925

    Article  CAS  Google Scholar 

  36. Sun S, Ma L, Wang J, Ma X, Tian H. Natl Sci Rev, 2022, 9: nwab085

    Article  CAS  Google Scholar 

  37. Ma XK, Zhang W, Liu Z, Zhang H, Zhang B, Liu Y. Adv Mater, 2021, 33: 2007476

    Article  CAS  Google Scholar 

  38. Kabe R, Adachi C. Nature, 2017, 550: 384–387

    Article  CAS  Google Scholar 

  39. Gu F, Ma X. Chem Eur J, 2022, 28: e202104131

    CAS  Google Scholar 

  40. Ma X, Wang J, Tian H. Acc Chem Res, 2019, 52: 738–748

    Article  CAS  Google Scholar 

  41. Hirata S. Adv Opt Mater, 2017, 5: 1700116

    Article  Google Scholar 

  42. Peng Q, Ma H, Shuai Z. Acc Chem Res, 2021, 54: 940–949

    Article  CAS  Google Scholar 

  43. Pedersen CJ. J Am Chem Soc, 1967, 89: 7017–7036

    Article  CAS  Google Scholar 

  44. Pedersen CJ. J Am Chem Soc, 1967, 89: 2495–2496

    Article  CAS  Google Scholar 

  45. Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev, 2017, 46: 2459–2478

    Article  CAS  Google Scholar 

  46. Liu Y, Chen Y. Acc Chem Res, 2006, 39: 681–691

    Article  CAS  Google Scholar 

  47. Jiang T, Qu G, Wang J, Ma X, Tian H. Chem Sci, 2020, 11: 3531–3537

    Article  CAS  Google Scholar 

  48. Ma L, Wang S, Li C, Cao D, Li T, Ma X. Chem Commun, 2018, 54: 2405–2408

    Article  CAS  Google Scholar 

  49. Vieira Ferreira LF, Ferreira Machado I, Oliveira AS, Vieira Ferreira MR, DaSilva JP, Moreira JC. J Phys Chem B, 2002, 106: 12584–12593

    Article  CAS  Google Scholar 

  50. Wang J, Yao X, Liu Y, Zhou H, Chen W, Sun G, Su J, Ma X, Tian H. Adv Opt Mater, 2018, 6: 1800074

    Article  Google Scholar 

  51. Zhang QW, Li D, Li X, White PB, Mecinović J, Ma X, Ågren H, Nolte RJM, Tian H. J Am Chem Soc, 2016, 138: 13541–13550

    Article  CAS  Google Scholar 

  52. Xu L, Wang Z, Wang R, Wang L, He X, Jiang H, Tang H, Cao D, Tang BZ. Angew Chem Int Ed, 2020, 59: 9908–9913

    Article  CAS  Google Scholar 

  53. Turro NJ, Bolt JD, Kuroda Y, Tabushi I. Photochem Photobiol, 1982, 35: 69–72

    Article  CAS  Google Scholar 

  54. Chen H, Ma X, Wu S, Tian H. Angew Chem Int Ed, 2014, 53: 14149–14152

    Article  CAS  Google Scholar 

  55. Cao J, Ma X, Min M, Cao T, Wu S, Tian H. Chem Commun, 2014, 50: 3224–3226

    Article  CAS  Google Scholar 

  56. Zhang ZY, Liu Y. Chem Sci, 2019, 10: 7773–7778

    Article  CAS  Google Scholar 

  57. Zhang ZY, Xu WW, Xu WS, Niu J, Sun XH, Liu Y. Angew Chem Int Ed, 2020, 59: 18748–18754

    Article  CAS  Google Scholar 

  58. Li C, Li X, Wang Q. Chin Chem Lett, 2022, 33: 877–880

    Article  CAS  Google Scholar 

  59. Li C, Zhu J, Wang Q. Dyes Pigments, 2022, 204: 110368

    Article  CAS  Google Scholar 

  60. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406

    Article  CAS  Google Scholar 

  61. Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. J Am Chem Soc, 2021, 143: 13887–13894

    Article  CAS  Google Scholar 

  62. Ma XK, Zhou X, Wu J, Shen FF, Liu Y. Adv Sci, 2022, 9: 2201182

    Article  CAS  Google Scholar 

  63. Gong Y, Chen H, Ma X, Tian H. ChemPhysChem, 2016, 17: 1934–1938

    Article  CAS  Google Scholar 

  64. Wang J, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2020, 59: 9928–9933

    Article  CAS  Google Scholar 

  65. Bhattacharjee I, Hirata S. Adv Mater, 2020, 32: 2001348

    Article  CAS  Google Scholar 

  66. Ma L, Sun S, Ding B, Ma X, Tian H. Adv Funct Mater, 2021, 31: 2010659

    Article  CAS  Google Scholar 

  67. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Ky Hirschberg JHK, Lange RFM, Lowe JKL, Meijer EW. Science, 1997, 278: 1601–1604

    Article  CAS  Google Scholar 

  68. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Chem Rev, 2001, 101: 4071–4098

    Article  CAS  Google Scholar 

  69. Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW. J Am Chem Soc, 1998, 120: 6761–6769

    Article  CAS  Google Scholar 

  70. Peng W, Zhang G, Zhao Q, Xie T. Adv Mater, 2021, 33: 2102473

    Article  CAS  Google Scholar 

  71. Zhang T, Wang C, Ma X. Ind Eng Chem Res, 2019, 58: 7778–7785

    Article  CAS  Google Scholar 

  72. Gao H, Ding B, Wang C, Ma X. J Mater Chem C, 2021, 9: 16581–16586

    Article  CAS  Google Scholar 

  73. Sun S, Fan Y, Ma L, Han Y, Ma X. J Phys Chem Lett, 2021, 12: 11919–11925

    Article  CAS  Google Scholar 

  74. Sun S, Wang J, Ma L, Ma X, Tian H. Angew Chem Int Ed, 2021, 60: 18557–18560

    Article  CAS  Google Scholar 

  75. Dong S, Leng J, Feng Y, Liu M, Stackhouse CJ, Schönhals A, Chiappisi L, Gao L, Chen W, Shang J, Jin L, Qi Z, Schalley CA. Sci Adv, 2017, 3: eaao0900

    Article  Google Scholar 

  76. Wu S, Cai C, Li F, Tan Z, Dong S. Angew Chem Int Ed, 2020, 59: 11871–11875

    Article  CAS  Google Scholar 

  77. Förster VT. Annalen der Physik, 1948, 6: 55–75

    Article  Google Scholar 

  78. Dexter DL. J Chem Phys, 1953, 21: 836–850

    Article  CAS  Google Scholar 

  79. Jares-Erijman EA, Jovin TM. Nat Biotechnol, 2003, 21: 1387–1395

    Article  CAS  Google Scholar 

  80. Sekar RB, Periasamy A. J Cell Biol, 2003, 160: 629–633

    Article  CAS  Google Scholar 

  81. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Nat Mater, 2003, 2: 630–638

    Article  CAS  Google Scholar 

  82. Bennett RG, Schwenker RP, Kellogg RE. J Chem Phys, 1964, 41: 3040–3041

    Article  CAS  Google Scholar 

  83. Jõgela J, Uri A, Pålsson LO, Enkvist E. J Mater Chem C, 2019, 7: 6571–6577

    Article  Google Scholar 

  84. Kuila S, George SJ. Angew Chem Int Ed, 2020, 59: 9393–9397

    Article  CAS  Google Scholar 

  85. Gui H, Huang Z, Yuan Z, et al. CCS Chem, 2021, 3: 481–489

    Article  Google Scholar 

  86. Huo M, Dai XY, Liu Y. Angew Chem Int Ed, 2021, 60: 27171–27177

    Article  CAS  Google Scholar 

  87. Lin F, Wang H, Cao Y, Yu R, Liang G, Huang H, Mu Y, Yang Z, Chi Z. Adv Mater, 2022, 34: 2108333

    Article  CAS  Google Scholar 

  88. Liu D, Sun K, Zhao G, Wei J, Duan J, Xia M, Jiang W, Sun Y. J Mater Chem C, 2019, 7: 11005–11013

    Article  CAS  Google Scholar 

  89. Nastasi F, Puntoriero F, Campagna S, Olivier JH, Ziessel R. Phys Chem Chem Phys, 2010, 12: 7392–7402

    Article  CAS  Google Scholar 

  90. Burrows HD, Fernandes M, Seixas de Melo J, Monkman AP, Navaratnam S. J Am Chem Soc, 2003, 125: 15310–15311

    Article  CAS  Google Scholar 

  91. Li G, Jiang D, Shan G, Song W, Tong J, Kang D, Hou B, Mu Y, Shao K, Geng Y, Wang X, Su Z. Angew Chem Int Ed, 2022, 61: e202113425

    CAS  Google Scholar 

  92. Ma L, Xu Q, Sun S, Ding B, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2022, 61: e202115748

    CAS  Google Scholar 

  93. Chen C, Chi Z, Chong KC, Batsanov AS, Yang Z, Mao Z, Yang Z, Liu B. Nat Mater, 2021, 20: 175–180

    Article  Google Scholar 

  94. Bilen CS, Harrison N, Morantz DJ. Nature, 1978, 271: 235–237

    Article  CAS  Google Scholar 

  95. Clapp DB. J Am Chem Soc, 1939, 61: 523–524

    Article  CAS  Google Scholar 

  96. Chen C, Chong KC, Pan Y, Qi G, Xu S, Liu B. ACS Mater Lett, 2021, 3: 1081–1087

    Article  CAS  Google Scholar 

  97. Ding B, Ma L, Huang Z, Ma X, Tian H. Sci Adv, 2021, 7: eabf9668

    Article  CAS  Google Scholar 

  98. Sun Y, Liu J, Li J, Li X, Wang X, Wang G, Zhang K. Adv Opt Mater, 2021, 10: 2101909

    Article  Google Scholar 

  99. Jinnai K, Kabe R, Lin Z, Adachi C. Nat Mater, 2022, 21: 338–344

    Article  CAS  Google Scholar 

  100. Yang J, Wu X, Shi J, Tong B, Lei Y, Cai Z, Dong Y. Adv Funct Mater, 2021, 31: 2108072

    Article  CAS  Google Scholar 

  101. Lei Y, Dai W, Guan J, Guo S, Ren F, Zhou Y, Shi J, Tong B, Cai Z, Zheng J, Dong Y. Angew Chem Int Ed, 2020, 59: 16054–16060

    Article  CAS  Google Scholar 

  102. Cheng A, Jiang Y, Su H, Zhang B, Jiang J, Wang T, Luo Y, Zhang G. Angew Chem Int Ed, 2022, 61: e202206366

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 22125803, 22020102006, 21871083), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Program of Shanghai Academic/Technology Research Leader (20XD1421300), the “Shu Guang” Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (19SG26), the Fundamental Research Funds for the Central Universities, and the China National Postdoctoral Program for Innovative Talents (BX20220106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ma.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Ma, X. Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Sci. China Chem. 66, 304–314 (2023). https://doi.org/10.1007/s11426-022-1400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1400-6

Keywords

Navigation