Skip to main content
Log in

Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Room temperature phosphorescence (RTP) has attracted much attention for the applications in information encryption, bio-imaging, displaying, and so on. In this text, persistent RTP emission is mainly achieved by the compact face-to-face packing modes with aromatic/perfluoroaromatic interactions. Moreover, it can be further optimized by halogen substitutions with heavy atom effect, electron-withdrawing property, and steric hindrance, resulting in the prolonged RTP lifetime. Furthermore, the multiple fluorine substitutions endowed these luminogens with the water-resistant property, resulting in the maintained RTP emission with water droplets. Therefore, the aromatic/perfluoroaromatic interactions are not only the efficient approach to achieve persistent RTP, but also extend their application to a humid environment or even in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabe R, Notsuka N, Yoshida K, Adachi C. Adv Mater, 2016, 28: 655–660

    Article  CAS  Google Scholar 

  2. Lehner P, Staudinger C, Borisov SM, Klimant I. Nat Commun, 2014, 5: 4460

    Article  CAS  Google Scholar 

  3. Su Y, Phua SZF, Li Y, Zhou X, Jana D, Liu G, Lim WQ, Ong WK, Yang C, Zhao Y. Sci Adv, 2018, 4: eaas9732

    Article  Google Scholar 

  4. Dang Q, Jiang Y, Wang J, Wang J, Zhang Q, Zhang M, Luo S, Xie Y, Pu K, Li Q, Li Z. Adv Mater, 2020, 32: 2006752

    Article  Google Scholar 

  5. Yang X, Yan D. Chem Sci, 2016, 7: 4519–4526

    Article  CAS  Google Scholar 

  6. Sarkar S, Hendrickson HP, Lee D, DeVine F, Jung J, Geva E, Kim J, Dunietz BD. J Phys Chem C, 2017, 121: 3771–3777

    Article  CAS  Google Scholar 

  7. Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Huang A, Lin P, Li C, Li Q, Li Z. Angew Chem Int Ed, 2019, 58: 17297–17302

    Article  CAS  Google Scholar 

  8. Wang Y, Gao H, Yang J, Fang M, Ding D, Tang BZ, Li Z. Adv Mater, 2021, 33: 2007811

    Article  CAS  Google Scholar 

  9. Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. Sci China Chem, 2021, 64: 445–451

    Article  CAS  Google Scholar 

  10. Ning Y, Yang J, Si H, Wu H, Zheng X, Qin A, Tang BZ. Sci China Chem, 2021, 64: 739–744

    Article  CAS  Google Scholar 

  11. Li Q, Li Z. Acc Chem Res, 2020, 53: 962–973

    Article  CAS  Google Scholar 

  12. Yang J, Ren Z, Chen B, Fang M, Zhao Z, Tang BZ, Peng Q, Li Z. J Mater Chem C, 2017, 5: 9242–9246

    Article  CAS  Google Scholar 

  13. Wen Y, Liu H, Zhang S, Gao Y, Yan Y, Yang B. J Mater Chem C, 2019, 7: 12502–12508

    Article  CAS  Google Scholar 

  14. Wang Y, Yang J, Tian Y, Fang M, Liao Q, Wang L, Hu W, Tang BZ, Li Z. Chem Sci, 2020, 11: 833–838

    Article  CAS  Google Scholar 

  15. Fang M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater Chem Front, 2018, 2: 2124–2129

    Article  CAS  Google Scholar 

  16. Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat Commun, 2018, 9: 840

    Article  Google Scholar 

  17. Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. Angew Chem Int Ed, 2020, 59: 9946–9951

    Article  CAS  Google Scholar 

  18. Yang J, Gao X, Xie Z, Gong Y, Fang M, Peng Q, Chi Z, Li Z. Angew Chem Int Ed, 2017, 56: 15299–15303

    Article  CAS  Google Scholar 

  19. Gu L, Shi H, Bian L, Gu M, Ling K, Wang X, Ma H, Cai S, Ning W, Fu L, Wang H, Wang S, Gao Y, Yao W, Huo F, Tao Y, An Z, Liu X, Huang W. Nat Photonics, 2019, 13: 406–411

    Article  CAS  Google Scholar 

  20. Zhao W, He Z, Lam JWY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang BZ. Chem, 2016, 1: 592–602

    Article  CAS  Google Scholar 

  21. Liao Q, Li Q, Li Z. ChemPhotoChem, 2021, 5: 694–701

    Article  CAS  Google Scholar 

  22. He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. Nat Commun, 2017, 8: 416

    Article  Google Scholar 

  23. Wen Y, Liu H, Zhang S, Cao J, De J, Yang B. Adv Opt Mater, 2020, 8: 1901995

    Article  CAS  Google Scholar 

  24. Bian L, Shi H, Wang X, Ling K, Ma H, Li M, Cheng Z, Ma C, Cai S, Wu Q, Gan N, Xu X, An Z, Huang W. J Am Chem Soc, 2018, 140: 10734–10739

    Article  CAS  Google Scholar 

  25. Shi H, An Z, Li PZ, Yin J, Xing G, He T, Chen H, Wang J, Sun H, Huang W, Zhao Y. Cryst Growth Des, 2016, 16: 808–813

    Article  CAS  Google Scholar 

  26. Huang Z, Chen X, Wu G, Metrangolo P, Whitaker D, McCune JA, Scherman OA. J Am Chem Soc, 2020, 142: 7356–7361

    Article  CAS  Google Scholar 

  27. Zhang H, Han J, Jin X, Duan P. Angew Chem Int Ed, 2021, 60: 4575–4580

    Article  Google Scholar 

  28. Wu W, Ye C, Qin J, Li Z. ACS Appl Mater Interfaces, 2013, 5: 7033–7041

    Article  CAS  Google Scholar 

  29. Yamasaki R, Iida M, Ito A, Fukuda K, Tanatani A, Kagechika H, Masu H, Okamoto I. Cryst Growth Des, 2017, 17: 5858–5866

    Article  CAS  Google Scholar 

  30. Coates GW, Dunn AR, Henling LM, Dougherty DA, Grubbs RH. Angew Chem Int Ed, 1997, 36: 248–251

    Article  CAS  Google Scholar 

  31. Coates GW, Dunn AR, Henling LM, Ziller JW, Lobkovsky EB, Grubbs RH. J Am Chem Soc, 1998, 120: 3641–3649

    Article  CAS  Google Scholar 

  32. Ponzini F, Zagha R, Hardcastle K, Siegel JS. Angew Chem Int Ed, 2000, 39: 2323–2325

    Article  CAS  Google Scholar 

  33. Iida A, Yamaguchi S. Chem Commun, 2009, 3002–3004

  34. Patrick CR, Prosser GS. Nature, 1960, 187: 1021

    Article  CAS  Google Scholar 

  35. Williams JH, Cockcroft JK, Fitch AN. Angew Chem Int Ed, 1992, 31: 1655–1657

    Article  Google Scholar 

  36. Reichenbächer K, Süss HI, Hulliger J. Chem Soc Rev, 2005, 34: 22–30

    Article  Google Scholar 

  37. Sun Y, Lei Y, Liao L, Hu W. Angew Chem Int Ed, 2017, 56: 10352–10356

    Article  CAS  Google Scholar 

  38. Botta C, Cariati E, Cavallo G, Dichiarante V, Forni A, Metrangolo P, Pilati T, Resnati G, Righetto S, Terraneo G, Tordin E. J Mater Chem C, 2014, 2: 5275–5279

    Article  CAS  Google Scholar 

  39. Sharber SA, Baral RN, Frausto F, Haas TE, Müller P, Thomas III SW. J Am Chem Soc, 2017, 139: 5164–5174

    Article  CAS  Google Scholar 

  40. West AP, Mecozzi S, Dougherty DA. J Phys Org Chem, 1997, 10: 347–350

    Article  CAS  Google Scholar 

  41. Dai C, Nguyen P, Marder TB, Marder TB, Scott AJ, Clegg W, Viney C, Viney C. Chem Commun, 1999, 24: 2493–2494

    Article  Google Scholar 

  42. Yu J, Ma H, Huang W, Liang Z, Zhou K, Lv A, Li XG, He Z. JACS Au, 2021, 1: 1694–1699

    Article  CAS  Google Scholar 

  43. Cheng Z, Shi H, Ma H, Bian L, Wu Q, Gu L, Cai S, Wang X, Xiong WW, An Z, Huang W. Angew Chem Int Ed, 2018, 57: 678–682

    Article  CAS  Google Scholar 

  44. Landeros-Rivera B, Jancik V, Moreno-Esparza R, Martínez Otero D, Hernández-Trujillo J. Chem Eur J, 2021, 27: 11912–11918

    Article  CAS  Google Scholar 

  45. Gleason WB, Britton D. Acta Crystallogr C, 1976, 5: 483–488

    CAS  Google Scholar 

  46. Shang R, Fu Y, Wang Y, Xu Q, Yu HZ, Liu L. Angew Chem Int Ed, 2009, 48: 9350–9354

    Article  CAS  Google Scholar 

  47. Yan ZA, Lin X, Sun S, Ma X, Tian H. Angew Chem Int Ed, 2021, 60: 19735–19739

    Article  CAS  Google Scholar 

  48. Liu W, Wang J, Gong Y, Liao Q, Dang Q, Li Z, Bo Z. Angew Chem Int Ed, 2020, 59: 20161–20166

    Article  CAS  Google Scholar 

  49. Ma H, Shi W, Ren J, Li W, Peng Q, Shuai Z. J Phys Chem Lett, 2016, 7: 2893–2898

    Article  CAS  Google Scholar 

  50. Fan J, Zhang Y, Zhang K, Liu J, Jiang G, Lin L, Wang CK. Org Electron, 2019, 71: 113–122

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc., 2013

    Google Scholar 

  52. Nidhankar AD, Goudappagouda AD, Wakchaure VC, Babu SS. Chem Sci, 2021, 12: 4216–4236

    Article  CAS  Google Scholar 

  53. Wu Z, Nitsch J, Marder TB. Adv Opt Mater, 2021, 9: 2100411–2100437

    Article  CAS  Google Scholar 

  54. Wheeler SE, Houk KN. J Am Chem Soc, 2008, 130: 10854–10855

    Article  CAS  Google Scholar 

  55. Zhao W, He Z, Tang BZ. Nat Rev Mater, 2010, 5: 869–885

    Article  Google Scholar 

  56. Yang J, Fang M, Li Z. Acc Mater Res, 2021, 2: 644–654

    Article  CAS  Google Scholar 

  57. Wang Y, Yang J, Fang M, Gong Y, Ren J, Tu L, Tang BZ, Li Z. Adv Funct Mater, 2021, 31: 2101719–2101726

    Article  CAS  Google Scholar 

  58. Wang Y, Yang J, Fang M, Yu Y, Zou B, Wang L, Tian Y, Cheng J, Tang BZ, Li Z. Matter, 2020, 3: 449–463

    Article  Google Scholar 

  59. Yang J, Fang M, Li Z. Aggregate, 2020, 1: 6–18

    Article  Google Scholar 

  60. Li Q, Li Z. Sci China Mater, 2020, 63: 177–184

    Article  Google Scholar 

  61. Wang Y, Yang J, Gong Y, Fang M, Li Z, Tang BZ. SmartMat, 2020, 1: doi: https://doi.org/10.1002/smm2.1006

  62. Li S, Xie Y, Li A, Li X, Che W, Wang J, Shi H, Li Z. Sci China Mater, 2021, 64: 2813–2823

    Article  CAS  Google Scholar 

  63. Li Y, Gu F, Ding B, Zou L, Ma X. Sci China Chem, 2021, 64: 1297–1301

    Article  CAS  Google Scholar 

  64. Li D, Yang Y, Yang J, Fang M, Tang BZ, Li Z. Nat Commun, 2022, 13: 347–354

    Article  Google Scholar 

  65. Yang J, Qin J, Geng P, Wang J, Fang M, Li Z. Angew Chem Int Ed, 2018, 57: 14174–14178

    Article  CAS  Google Scholar 

  66. Zhou WL, Chen Y, Yu Q, Zhang H, Liu ZX, Dai XY, Li JJ, Liu Y. Nat Commun, 2020, 11: 4655–4664

    Article  CAS  Google Scholar 

  67. Chai Z, Wang C, Wang J, Liu F, Xie Y, Zhang YZ, Li JR, Li Q, Li Z. Chem Sci, 2017, 8: 8336–8344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for Excellent Young Scholars (22122504), the National Natural Science Foundation of China (51973162, 21875174, 21734007), and the Excellent Youth Foundation of Hubei Scientific Committee (2020CFA084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianqian Li or Zhen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Fan, Y., Liao, Q. et al. Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions. Sci. China Chem. 65, 918–925 (2022). https://doi.org/10.1007/s11426-021-1229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1229-4

Keywords

Navigation