Skip to main content
Log in

Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) have been attractive for nanomedicine because of their pronounced optical properties. Here, we customerized the methods to synthesize two types of gold nanostars, Au nanostars-1 and Au nanostars-2, which have different spire lengths and optical properties, and also spherical AuNPs. Compared to nanospheres, gold nanostars were less toxic to a variety of cells, including macrophages. Au nanostars-1 and Au nanostars-2 also manifested a similar pattern of tissue distribution upon in vivo administration in mice to that of nanospheres, and but reveled less liver retention than nanospheres. Due to their strong absorption in the near-infrared (NIR), Au nanostars-2 induced a strong hyperthermia effect in vitro upon excitation at 808 nm, and elicited a robust photothermal therapy (PTT) efficacy in ablating tumors in a mouse model of orthotopic breast cancer using 4T1 breast cancer cells. Meanwhile, Au nanostars-1 showed a great capability to enhance the Raman signal through surface-enhanced Raman spectroscopy (SERS) in 4T1 cells. Our combined results opened a new avenue to develop Au nanostars for cancer imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim JE, Choi JH, Colas M, Kim DH, Lee H. Biosens Bioelectron, 2016, 80: 543–559

    Article  CAS  Google Scholar 

  2. Yang X, Yang M, Pang B, Vara M, Xia Y. Chem Rev, 2015, 115: 10410–10488

    Article  CAS  Google Scholar 

  3. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Lasers Med Sci, 2008, 23: 217–228

    Article  Google Scholar 

  4. Zhou H, Qiu C, Yu F, Yang H, Chen M, Hu L, Sun L. J Phys Chem C, 2011, 115: 11348–11354

    Article  CAS  Google Scholar 

  5. Tata A, Szkudlarek A, Kim Y, Proniewicz E. Spectrochim Acta A-Mol Biomol Spectrosc, 2017, 173: 251–256

    Article  CAS  Google Scholar 

  6. Liu XL, Liang S, Nan F, Yang ZJ, Yu XF, Zhou L, Hao ZH, Wang QQ. Nanoscale, 2013, 5: 5368–5374

    Article  CAS  Google Scholar 

  7. Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K. Nat Protoc, 2013, 8: 677–692

    Article  CAS  Google Scholar 

  8. Weissleder R, Nahrendorf M, Pittet MJ. Nat Mater, 2014, 13: 125–138

    Article  CAS  Google Scholar 

  9. Ju HX. Sci China Chem, 2011, 54: 1202–1217

    Article  CAS  Google Scholar 

  10. Wang P, Wan Y, Ali A, Deng S, Su Y, Fan C, Yang S. Sci China Chem, 2016, 59: 237–242

    Article  CAS  Google Scholar 

  11. Feng B, Zhou F, Wang D, Xu Z, Yu H, Li Y. Sci China Chem, 2016, 59: 984–990

    Article  CAS  Google Scholar 

  12. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Small, 2009, 5: 701–708

    Article  CAS  Google Scholar 

  13. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM. Nanotechnology, 2007, 19: 015606

    Article  Google Scholar 

  14. Zhou CH, Gan LL, Zhang YY, Zhang FF, Wang GZ, Jin L, Geng RX. Sci China Ser B-Chem, 2009, 52: 415–458

    Article  CAS  Google Scholar 

  15. Song HM, Wei Q, Ong QK, Wei A. ACS Nano, 2010, 4: 5163–5173

    Article  CAS  Google Scholar 

  16. Fales AM, Yuan H, Vo-Dinh T. Langmuir, 2011, 27: 12186–12190

    Article  CAS  Google Scholar 

  17. Yu J, Guo WC, Yang M, Luan Y, Tao JZ, Zhang XW. Sci China Chem, 2014, 57: 1211–1217

    Article  CAS  Google Scholar 

  18. Rodríguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla RA, Liz-Marzán LM, Prior IA, Brust M. Integr Biol, 2011, 3: 922–926

    Article  Google Scholar 

  19. imenez de Aberasturi D, Serrano-Montes AB, Langer J, Henriksen-Lacey M, Parak WJ, Liz-Marzán LM. Chem Mater, 2016, 28: 6779–6790

    Article  Google Scholar 

  20. Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Trends Biotech, 2013, 31: 249–257

    Article  CAS  Google Scholar 

  21. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Nat Rev Mater, 2016, 1: 16014

    Article  CAS  Google Scholar 

  22. Khlebtsov N, Dykman L. Chem Soc Rev, 2011, 40: 1647–1671

    Article  CAS  Google Scholar 

  23. Yen HJ, Hsu SH, Tsai CL. Small, 2009, 5: 1553–1561

    Article  CAS  Google Scholar 

  24. Sun YN, Wang CD, Zhang XM, Ren L, Tian XH. J Nanosci Nanotech, 2011, 11: 1210–1216

    Article  CAS  Google Scholar 

  25. Kah JCY, Grabinski C, Untener E, Garrett C, Chen J, Zhu D, Hussain SM, Hamad-Schifferli K. ACS Nano, 2014, 8: 4608–4620

    Article  CAS  Google Scholar 

  26. Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu Q, Zhang Z, Xia T, Zhao J, Jiang G, Xu Y, Liu S. ACS Nano, 2014, 8: 5813–5825

    Article  CAS  Google Scholar 

  27. Guo W, Zhang S, Chen Y, Zhang D, Yuan L, Cong H, Liu S. Acta Biochim Biophys Sin, 2015, 47: 703–715

    Article  Google Scholar 

  28. Guo W, Zhang S, Liu S. Oncol Rep, 2015, 33: 2992–2998

    Article  CAS  Google Scholar 

  29. de Puig H, Tam JO, Yen CW, Gehrke L, Hamad-Schifferli K. J Phys Chem C, 2015, 119: 17408–17415

    Article  Google Scholar 

  30. Ma J, Li R, Qu G, Liu H, Yan B, Xia T, Liu Y, Liu S. Nanoscale, 2016, 8: 18070–18086

    Article  CAS  Google Scholar 

  31. Ma J, Liu R, Wang X, Liu Q, Chen Y, Valle RP, Zuo YY, Xia T, Liu S. ACS Nano, 2015, 9: 10498–10515

    Article  CAS  Google Scholar 

  32. Mosmann T. J Immunol Methods, 1983, 65: 55–63

    Article  CAS  Google Scholar 

  33. Su YH, Ke YF, Cai SL, Yao QY. Light Sci Appl, 2012, 1: e14

    Article  Google Scholar 

  34. Adair JH, Parette MP, Altinoğlu EI, Kester M. ACS Nano, 2010, 4: 4967–4970

    Article  CAS  Google Scholar 

  35. Chithrani BD, Ghazani AA, Chan WCW. Nano Lett, 2006, 6: 662–668

    Article  CAS  Google Scholar 

  36. Vácha R, Martinez-Veracoechea FJ, Frenkel D. Nano Lett, 2011, 11: 5391–5395

    Article  Google Scholar 

  37. Ferrari M. Nat Rev Cancer, 2005, 5: 161–171

    Article  CAS  Google Scholar 

  38. Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF. ACS Nano, 2010, 4: 365–379

    Article  Google Scholar 

  39. Cigler P, Lytton-Jean AKR, Anderson DG, Finn MG, Park SY. Nat Mater, 2010, 9: 918–922

    Article  CAS  Google Scholar 

  40. Tian M, Ogawa K, Wendt R, Mukhopadhyay U, Balatoni J, Fukumitsu N, Uthamanthil R, Borne A, Brammer D, Jackson J, Mawlawi O, Yang B, Alauddin MM, Gelovani JG. J Nucl Med, 2011, 52: 934–941

    Article  CAS  Google Scholar 

  41. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, Khadem-Saba G, Montenegro JM, Rejman J, Rojo T, de Larramendi IR, Ufartes R, Wenk A, Parak WJ. Nat Nanotech, 2015, 10: 619–623

    Article  CAS  Google Scholar 

  42. Liang S, Li C, Zhang C, Chen Y, Xu L, Bao C, Wang X, Liu G, Zhang F, Cui D. Theranostics, 2015, 5: 970–984

    Article  CAS  Google Scholar 

  43. Liu J, Zheng X, Gu Z, Chen C, Zhao Y. Nanomed-Nanotechnol Biol Med, 2016, 12: 486–487

    Article  Google Scholar 

  44. Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, Wang L, Liu Y, Hu Z, Gu Z, Chen C, Zhao Y. ACS Nano, 2015, 9: 696–707

    Article  CAS  Google Scholar 

  45. Wang S, Shang L, Li L, Yu Y, Chi C, Wang K, Zhang J, Shi R, Shen H, Waterhouse GIN, Liu S, Tian J, Zhang T, Liu H. Adv Mater, 2016, 28: 8379–8387

    Article  CAS  Google Scholar 

  46. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353–1359

    Article  CAS  Google Scholar 

  47. Liu H, Liu T, Wu X, Li L, Tan L, Chen D, Tang F. Adv Mater, 2012, 24: 755–761

    Article  CAS  Google Scholar 

  48. Liu J, Wang P, Zhang X, Wang L, Wang D, Gu Z, Tang J, Guo M, Cao M, Zhou H, Liu Y, Chen C. ACS Nano, 2016, 10: 4587–4598

    Article  CAS  Google Scholar 

  49. Ren W, Liu JY, Guo SJ, Wang EK. Sci China Chem, 2011, 54: 1334–1341

    Article  CAS  Google Scholar 

  50. Tong LM, Zhu T, Liu ZF. Sci China Ser B, 2007, 50: 520–525

    Article  CAS  Google Scholar 

  51. Indrasekara ASDS, Meyers S, Shubeita S, Feldman LC, Gustafsson T, Fabris L. Nanoscale, 2014, 6: 8891–8899

    Article  CAS  Google Scholar 

  52. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ. Anal Methods, 2014, 6: 9116–9123

    Article  CAS  Google Scholar 

  53. Song C, Yang B, Yang Y, Wang L. Sci China Chem, 2016, 59: 16–29

    Article  CAS  Google Scholar 

  54. Michota A, Bukowska J. J Raman Spectrosc, 2003, 34: 21–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program (2014CB932000), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14000000) and the National Natural Science Foundation of China (21425731, 21637004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kimberly Hamad-Schifferli or Sijin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Sanchez-Purra, M., Huang, H. et al. Synthesis of different-sized gold nanostars for Raman bioimaging and photothermal therapy in cancer nanotheranostics. Sci. China Chem. 60, 1219–1229 (2017). https://doi.org/10.1007/s11426-017-9088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9088-x

Keywords

Navigation