Skip to main content
Log in

Sensitive biosensing strategy based on functional nanomaterials

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The first decade of the 21st century has been labeled as “the sensing decade”. The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have focused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunctionalized nanomaterials can be used as catalysts, electronic conductors, optical emitters, carriers or tracers to obtain the amplified detection signal and the stabilized recognition probes or biosensing interface. The designed signal amplification strategies have greatly promoted the development of stable, specific, selective and sensitive biosensors in different fields. This review introduces some novel principles and detection strategies in the area of biosensing, based on functional nanomaterials. The general methods for biofunctionalization of nanomaterials with biomolecules and their biosensing application in immunoassay of protein, DNA detection, carbohydrate analysis and cytosensing are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ju HX, Zhang XJ, Wang J. Nanobiosensing: Principles, Development and Application. New York: Springer, 2011

    Google Scholar 

  2. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew Chem Int Ed, 2004, 43: 6042–6108

    Article  CAS  Google Scholar 

  3. Daniel MC, Astruc D. Gold nanoparticles: Assembly, dupramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104: 293–346

    Article  CAS  Google Scholar 

  4. Neouze MA, Schubert U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem, 2008, 139: 183–195

    Article  CAS  Google Scholar 

  5. Lai GS, Yan F, Ju HX. Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem, 2009, 81: 9730–9736

    Article  CAS  Google Scholar 

  6. Jiang H, Ju HX. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem Commun, 2007, 404–406

  7. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2: 338–342

    Article  CAS  Google Scholar 

  8. Hasobe T, Fukuzumi S, Kamat PV. Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods. J Am Chem Soc, 2005, 127: 11884–11885

    Article  CAS  Google Scholar 

  9. Gao Y, Cranston R. Polytyrosine as an electroactive label for signal amplification in electrochemical immunosensors. Anal Chim Acta, 2010, 659: 109–114

    Article  CAS  Google Scholar 

  10. Zhao HT, Ju HX, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal Biochem, 2006, 350: 138–144

    Article  CAS  Google Scholar 

  11. Pinijsuwan S, Rijiravanich P, Somasundrum M, Surareungchai W. Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification. Anal Chem, 2008, 80: 6779–6784

    Article  CAS  Google Scholar 

  12. Zhang J, Lei JP, Xu CL, Ding L, Ju HX. Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal Chem, 2010, 82: 1117–1122

    Article  CAS  Google Scholar 

  13. Hu KC, Lan DX, Li XM, Zhang SS. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal Chem, 2008, 80: 9124–9130

    Article  CAS  Google Scholar 

  14. Cheng LX, Liu X, Lei JP, Ju HX. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal Chem, 2010, 82: 3359–3364

    Article  CAS  Google Scholar 

  15. Krovi SA, Smith D, Nguyen ST. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization. Chem Commun, 2010, 46: 5277–5279

    Article  CAS  Google Scholar 

  16. Gallant ND, Lavery KA, Amis EJ, Becker ML. Universal gradient substrates for “click” biofunctionalization. Adv Mater, 2007, 19: 965–969

    Article  CAS  Google Scholar 

  17. Moon S, Kim DJ, Kim K, Kim D, Lee H, Lee K, Haam S. Surface-enhanced plasmon resonance detection of nanoparticleconjugated DNA hybridization. Appl Optics, 2010, 49: 484–491

    Article  CAS  Google Scholar 

  18. Maier I, Morgan MRA, Lindner W, Pittner F. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal Chem, 2008, 80: 2694–2703

    Article  CAS  Google Scholar 

  19. Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou FM. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem, 2006, 354: 220–228

    Article  CAS  Google Scholar 

  20. Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem, 2010, 397: 212–217

    Article  CAS  Google Scholar 

  21. Kim D, Daniel WL, Mirkin CA. Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes. Anal Chem, 2009, 81: 9183–9187

    Article  CAS  Google Scholar 

  22. Stewart ME, Anderton CR, Thompson LB. Nanostructured plasmonic sensors. Chem Rev, 2008, 108: 494–521

    Article  CAS  Google Scholar 

  23. Fu Y, Zhang J, Lakowicz JR. Silver-enhanced fluorescence emission of single quantum dot nanocomposites. Chem Commun, 2009, 3: 313–315

    Article  CAS  Google Scholar 

  24. Pu KY, Li K, Liu B. Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater, 2010, 22: 643–646

    Article  CAS  Google Scholar 

  25. Ding CF, Wang ZF, Zhong H, Zhang SS. Ultrasensitive chemiluminescence quantification of single-nucleotide polymorphisms by using monobase-modified Au and CuS nanoparticles. Biosens Bioelectron, 2010, 25: 1082–1087

    Article  CAS  Google Scholar 

  26. Bi S, Zhou H, Zhang SS. Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization. Chem Commun, 2009, 37: 5567–5569

    Article  CAS  Google Scholar 

  27. Jie GF, Li LL, Chen C, Xuan J, Zhu JJ. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron, 2009, 24: 3352–3358

    Article  CAS  Google Scholar 

  28. Velev OD, Kaler EW. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir, 1999, 15: 3693–3698

    Article  CAS  Google Scholar 

  29. Wang J, Xu D, Kawde AN, Polsky R. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem, 2001, 73: 5576–5581

    Article  CAS  Google Scholar 

  30. Authier L, Grossirod C, Brossier P, Limoges B. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem, 2001, 73: 4450–4456

    Article  CAS  Google Scholar 

  31. Lai GS, Yan F, Wu J, Leng C, Ju HX. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reactio. Anal Chem, 2011, 83: 2726–2732

    Article  CAS  Google Scholar 

  32. Wang J, Liu G, Merkocüi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc, 2003, 125: 3214–3215

    Article  CAS  Google Scholar 

  33. Liu G, Lee TMH, Wang J. Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. J Am Chem Soc, 2005, 127: 38–39

    Article  CAS  Google Scholar 

  34. Liu G, Wang J, Kim J, Jan MR, Collins GE. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem, 2004, 76: 7126–7130

    Article  CAS  Google Scholar 

  35. Hansen JA, Wang J, Kawde A, Xiang Y, Gothelf KV, Collins G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc, 2006, 126: 2228–2229

    Article  CAS  Google Scholar 

  36. Cheng W, Yan F, Ding L, Ju HX, Yin YB. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem, 2010, 82: 3337–3342

    Article  CAS  Google Scholar 

  37. Bonanni A, Pividori MI, Campoy S, Barbe J, del Valle M. Impedimetric detection of double-tagged PCR products using novel amplification procedures based on gold nanoparticles and protein G. Analyst, 2009, 134: 602–608

    Article  CAS  Google Scholar 

  38. Li JH, Hu JB. Functional gold nanoparticle-enhanced electrochemical determination of DNA hybridization and sequence-speciric analysis. Acta Chim Sinica, 2004, 62: 2081–2088

    CAS  Google Scholar 

  39. Zhang W, Shaikh AU, Tsui EY, Swager TM. Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem Mater, 2009, 21: 3234–3241

    Article  CAS  Google Scholar 

  40. Tu WW, Lei JP, Ding L, Ju HX. Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun, 2009, 28: 4227–4229

    Article  CAS  Google Scholar 

  41. Tu WW, Lei JP, Zhang SY, Ju HX. Characterization, direct electrochemistry and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin. Chem Eur J, 2010, 16: 10771–10777

    Article  CAS  Google Scholar 

  42. Du P, Li HX, Cao W. Construction of DNA sandwich electrochemical biosensor with nanoPbS and nanoAu tags on magnetic microbeads. Biosens Bioelectron, 2009, 24: 3223–3228

    Article  CAS  Google Scholar 

  43. Liu XP, Wu HW, Zheng Y, Wu ZS, Jiang JH, Shen GL, Yu RQ. A sensitive electrochemical immunosensor for α-Fetoprotein detection with colloidal gold-based dentritical enzyme complex amplification. Electroanalysis, 2010, 22: 244–250

    Article  CAS  Google Scholar 

  44. Ding CF, Li H, Hu KC, Lin JM. Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode. Talanta, 2010, 80: 1385–1391

    Article  CAS  Google Scholar 

  45. Fang LY, Lü ZZ, Wei H, Wang E. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta, 2008, 628:80–86

    Article  CAS  Google Scholar 

  46. Zhu ZQ, Su YY, Li J, Li D, Zhang J, Song SP, Zhao Y, Li GX, Fan CH. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem, 2009, 81: 7660–7666

    Article  CAS  Google Scholar 

  47. Carrillo-Carrión C, Simonet BM, Valcárcel M. Carbon nanotubequantum dot nanocomposites as new fluorescence nanoparticles for the determination of trace levels of PAHs in water. Anal Chim Acta, 2009, 652: 278–284

    Article  CAS  Google Scholar 

  48. Lee AC, Ye JS, Tan SN, Poenar DP, Sheu FS, Heng CK, Lim TM. Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection ofnucleic acids. Nanotechnology, 2007, 18: 455102

    Article  CAS  Google Scholar 

  49. Gao WC, Dong HF, Lei JP, Ji HX, Ju HX. Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem Commun, 2011, 47: 5220–5222

    Article  CAS  Google Scholar 

  50. Wang YY, Liu B. Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens Bioelectron, 2009, 24: 3293–3298

    Article  CAS  Google Scholar 

  51. Dong HF, Yan F, Ji HX, Wong DKY, Ju HX. Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater, 2010, 20: 1173–1179

    Article  CAS  Google Scholar 

  52. Wu J, Tang JH, Dai Z, Yan F, Ju HX, EL Murr N. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron, 2006, 22: 102–108

    Article  CAS  Google Scholar 

  53. Wu J, Yan F, Zhang XQ, Yan YT, Tang JH, Ju HX. Disposable reagentless electrochemical immunosensor array based on a biopolymer/sol-gel membrane for simultaneous measurement of several tumor markers. Clin Chem, 2008, 54: 1481–1488

    Article  CAS  Google Scholar 

  54. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P. Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron, 2008, 24: 78–86

    Article  CAS  Google Scholar 

  55. Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong LW, Fischer AB, Gudibande SR, Jamieson SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ. Carbon nanotube-based biosensor. Adv Mater, 2003, 15: 1184–1187

    Article  CAS  Google Scholar 

  56. Wu LN, Yan F, Ju HX. An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J Immunol Methods, 2007, 322: 12–19

    Article  CAS  Google Scholar 

  57. Nie HG, Liu SJ, Yu RQ, Jiang JH. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew Chem Int Ed, 2009, 48: 9862–9866

    Article  CAS  Google Scholar 

  58. Wu Z, Zhen Z, Jiang JH, Shen GL, Yu RQ. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J Am Chem Soc, 2009, 131: 12325–12332

    Article  CAS  Google Scholar 

  59. Liu Y, Jiang H. Electroanalytical determination of carcinoembryonic antigen at a silica nanoparticles/titania sol-gel composite membrane-modified gold electrode. Electroanalysis, 2006, 18: 1007–1013

    Article  CAS  Google Scholar 

  60. Yang ZJ, Xie ZY, Liu H, Yan F, Ju HX. Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv Funct Mater, 2008, 18: 3991–3998

    Article  CAS  Google Scholar 

  61. Hu DH, Han HY, Zhou R, Dong F, Bei WC, Jia F, Chen HC. Gold(III) enhanced hemiluminescence immunoassay for detection of antibody against ApxIV of Actinobacillus pleuropneumoniae. Analyst, 2008, 133: 768–773

    Article  CAS  Google Scholar 

  62. Leng C, Lai GS, Yan F Ju HX. Gold nanoparticle as an electrochemical label for inherently crosstalk-free multiplexed immunoassay on a disposable chip. Anal Chim Acta, 2010, 666: 97–101

    Article  CAS  Google Scholar 

  63. Jin XY, Jin XF, Chen LG, Jiang JH, Shen GL, Yu RQ. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosens Bioelectron, 2009, 24: 2580–2585

    Article  CAS  Google Scholar 

  64. Hu SH, Liu R, Zhang SC, Huang Z, Xing Z, Zhang XR. A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry. J Am Soc Mass Spectr, 2009, 20: 1096–1103

    Article  CAS  Google Scholar 

  65. Hu SH, Zhang SC, Hu ZC, Xing Z, Zhang XR. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immunomicroarray with element-tagged antibodies. Anal Chem, 2007, 79: 923–929

    Article  CAS  Google Scholar 

  66. Vinayaka AC, Basheer S, Thakur MS. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron, 2009, 24: 1615–1620

    Article  CAS  Google Scholar 

  67. Liu GD, Wang J, Kim J, Jan MR, Collins GE. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem, 2004, 76: 7126–7130

    Article  CAS  Google Scholar 

  68. Thurer R, Vigassy T, Hirayama M, Wang J, Bakker E, Pretsch E. Potentiometric immunoassay with quantum dot labels. Anal Chem, 2007, 79: 5107–5110

    Article  CAS  Google Scholar 

  69. Liu X, Zhang YY, Lei JP, Xue YD, Cheng LX, Ju HX. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal Chem, 2010, 82: 7351–7356

    Article  CAS  Google Scholar 

  70. Zhu NN, Lin YQ, Yu P, Su L, Mao LQ. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA. Anal Chim Acta, 2009, 650: 44–48

    Article  CAS  Google Scholar 

  71. Wang J, Liu GD, Jan MR. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc, 2004, 126: 3010–3011

    Article  CAS  Google Scholar 

  72. Niu SY, Han B, Cao W, Zhang SS. Sensitive DNA biosensor improved by Luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode. Anal Chim Acta, 2009, 651: 42–47

    Article  CAS  Google Scholar 

  73. Zhang W, Yang T, Huang DM, Jiao K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett, 2008, 19: 589–591

    Article  CAS  Google Scholar 

  74. Dong HF, Gao WC, Yan F, Ji HX, Ju HX. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem, 2010, 82: 5511–5517

    Article  CAS  Google Scholar 

  75. Bally M, Halter M, Voros J, Grandin HM. Optical microarray biosensing techniques. Surf Interf Anal, 2006, 38: 1442–1458

    Article  CAS  Google Scholar 

  76. Cheng YT, Pun CC, Tsai CY, Chen PH. An array-based CMOS biochip for electrical detection of DNA with multilayer self-assembly gold nanoparticles. Sensor Actuat B-Chem, 2005, 109: 249–255

    Article  CAS  Google Scholar 

  77. Lytton-Jean AKR, Han MS, Mirkin CA. Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Anal Chem, 2007, 79: 6037–6041

    Article  CAS  Google Scholar 

  78. Chang TL, Tsai CY, Sun CC, Uppala R, Chen CC, Lin CH, Chen PH. Electrical detection of DNA using gold and magnetic nanoparticles and bio bar-code DNA between nanogap electrodes. Microelectron Engineering, 2006, 83: 1630–1633

    Article  CAS  Google Scholar 

  79. Baldwin RP. Electrochemical determination of carbohydrates: Enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. J Pharm Biomed Anal, 1999, 19: 69–81

    Article  CAS  Google Scholar 

  80. Sims MJ, Li Q, Kachoosangi RT, Wildgoose GG, Compton RG. Using multiwalled carbon nanotube modified electrodes for the adsorptive striping voltammetric determination of hesperidin. Electrochim Acta, 2009, 54: 5030–5034

    Article  CAS  Google Scholar 

  81. Elahi MY, Mousavi MF, Ghasemi S. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose. Electrochim Acta, 2008, 54: 490–498

    Article  CAS  Google Scholar 

  82. Sharon N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem Rev, 1998, 98: 637–674

    Article  Google Scholar 

  83. Babu P, Sinha S, Surolia A. Sugar quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem, 2006, 18: 146–151

    Article  CAS  Google Scholar 

  84. Ding L, Ji QJ, Qian RC Cheng W, Ju HX. Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal Chem, 2010, 82: 1292–1298

    Article  CAS  Google Scholar 

  85. Zheng T, Peelen D, Smith LM. Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 2005, 127: 9982–9983

    Article  CAS  Google Scholar 

  86. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide NPs for biomedical applications. Biomaterials, 2005, 26: 3995–4021

    Article  CAS  Google Scholar 

  87. Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN. Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr Med Chem, 2009, 16: 4712–4727

    Article  CAS  Google Scholar 

  88. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman NP tags. Nat Biotechnol, 2008, 26: 83–90

    Article  CAS  Google Scholar 

  89. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci, 2009, 106: 13511–13516

    Article  CAS  Google Scholar 

  90. Medley CD, Smith JE, Tang ZW, Wu YR, Bamrungsap S, Tan WH. Gold NP-based colorimetric assay for the direct detection of cancerous cells. Anal Chem, 2008, 80: 1067–1072

    Article  CAS  Google Scholar 

  91. Lee JS, Mirkin CA. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold NPs. Anal Chem, 2008, 80: 6805–6808

    Article  CAS  Google Scholar 

  92. Ding L, Qian RC, Xue YD, Cheng W, Ju HX. In situ scanometric assay of cell surface carbohydrate by glycoNP-aggregation-regulated silver enhancement. Anal Chem, 2010, 82: 5804–5809

    Article  CAS  Google Scholar 

  93. Ding L, Xiao XR, Chen YL, Qian RC, Bao L, Ju HX. Transfer of carbohydrate expression information on cell-adhered surface to a secondary surface by competition of two surfaces for one species. Chem Commun, 2011, 47: 3742–3744

    Article  CAS  Google Scholar 

  94. Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew Chem Int Ed, 2010, 49: 2114–2138

    Article  CAS  Google Scholar 

  95. Du D, Liu SL, Chen J, Ju HX, Lian HZ, Li JX. Colloidal gold NP modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials, 2005, 26: 6487–6495

    Article  CAS  Google Scholar 

  96. Chen J, Du D, Yan F, Ju HX, Lian HZ. Electrochemical anti-tumor drug sensitivity test for leukemia K562 cells at a carbon nanotubes modified electrode. Chem Eur J, 2005, 11: 1467–1472

    Article  CAS  Google Scholar 

  97. Ding L, Hao C, Xue YD, Ju HX. A bio-inspired support of gold NPs-chitosan nanocomposites gel for immobilization and electrochemical study of K562 Leukemia cells. Biomacromolecules, 2007, 8: 1341–1346

    Article  CAS  Google Scholar 

  98. Ding L, Hao C, Zhang XJ, Ju HX. Carbon nanofiber doped polypyrrole nanoscaffold for electrochemical monitoring of cell adhesion and proliferation. Electrochem Commun, 2009, 11: 760–763

    Article  CAS  Google Scholar 

  99. Varshney M, Li Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron, 2007, 22: 2408–2414

    Article  CAS  Google Scholar 

  100. Cheng W, Ding L, Lei JP, Ding SJ, Ju HX. Effective cell capture with tetrapeptide functionalized carbon nanotubes and dual signal amplification for cytosensing and evaluation of cell surface carbohydrate. Anal Chem, 2008, 80: 3867–3872

    Article  CAS  Google Scholar 

  101. Cheng W, Ding L, Ding SJ, Ying YB, Ju HX. A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew Chem Int Ed, 2009, 48: 6465–6468

    Article  CAS  Google Scholar 

  102. Han E, Ding L, Lian HZ, Ju HX. Cytosensing and dynamic monitoring of cell surface carbohydrate expression by electrochemiluminescence of quantum dots. Chem Commun, 2010, 5446–5448

  103. Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126: 855–867

    Article  CAS  Google Scholar 

  104. Ding L, Cheng W, Wang XJ. Ding SJ, Ju HX. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrates. J Am Chem Soc, 2008, 130: 7224–7225

    Article  CAS  Google Scholar 

  105. Xie M, Hu J, Long YM, Zhang ZL, Xie HY, Pang DW. Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosens Bioelectron, 2008, 24: 1311–1317

    Article  CAS  Google Scholar 

  106. Xu X, Ding L, Xue YD, Ju HX. A simple fluorescent method for in situ evaluation of cell surface carbohydrate with a novel lectin-nanoprobe. Analyst, 2010, 135: 1906–1908

    Article  CAS  Google Scholar 

  107. Han E, Ding L, Jin S, Ju HX. Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate. Biosens Bioelectron, 2011, 26: 2500–2505

    Article  CAS  Google Scholar 

  108. Zhelev Z, Ohba H, Bakalova R, Jose R, Fukuoka S, Nagase T, Ishikawa M, Baba Y. Fabrication of quantum dot-lectin conjugates as novel fluorescent probes for microscopic and flow cytometric identification of leukemia cells from normal lymphocytes. Chem Commun, 2005, 15: 1980–1982

    Article  CAS  Google Scholar 

  109. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev, 2005, 105: 1547–1562

    Article  CAS  Google Scholar 

  110. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. Motion-based DNA detection using catalytic nanomotors. Nat Commun, 2010, doi:10.1038/ncomms1035

  111. Dong HF, Ding L, Yan F, Ji HX, Ju HX. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials, 2011, 32: 3875–3882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuangXian Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, H. Sensitive biosensing strategy based on functional nanomaterials. Sci. China Chem. 54, 1202–1217 (2011). https://doi.org/10.1007/s11426-011-4339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4339-2

Keywords

Navigation