Skip to main content
Log in

SERS-based mercury ion detections: principles, strategies and recent advances

  • Reviews
  • SPECIAL TOPIC · Fluorescent Chemical/Biological Sensors and Imaging
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Mercury ion (Hg2+), known as one of the highly toxic and soluble heavy metal ions, is causing serious environmental pollution and irreversible damage to the health. It is urgent to develop some rapid and ultrasensitive methods for detecting trace mercury ions in the environment especially drink water. Surface-enhanced Raman scattering (SERS) is considered as a novel and powerful optical analysis technique since it has the significant advantages of ultra-sensitivity and high specificity. In recent years, the SERS technique and its application in the detection of Hg2+ have become more prevalent and compelling. This review provides an overall survey of the development of SERS-based Hg2+ detections and presents a summary relating to the basic principles, detection strategies, recent advances and current challenges of SERS for Hg2+ detections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eley BM, Cox SW. Br Dent J, 1993, 175: 161–168

    Article  Google Scholar 

  2. Nolan EM, Lippard SJ. Chem Rev, 2008, 108: 3443–3480

    Article  CAS  Google Scholar 

  3. Castilhos ZC, Rodrigues-Filho S, Rodrigues APC, Villas-Bôasa RC, Siegel S, Veiga MM, Beinhoff C. Sci Total Environ, 2006, 368: 320–325

    Article  CAS  Google Scholar 

  4. Onyido I, Norris AR, Buncel E. Chem Rev, 2004, 104: 5911–5930

    Article  CAS  Google Scholar 

  5. Palmer R, Blanchard S, Stein Z, Mandell D, Miller C. Health Place, 2006, 12: 203–209

    Article  Google Scholar 

  6. Harada M. Teratology, 1978, 18: 285–288

    Article  CAS  Google Scholar 

  7. Sun B, Jiang XX, Wang HX, Song B, Zhu Y, Wang H, Su Y, He Y. Anal Chem, 2015, 87: 1250–1256

    Article  CAS  Google Scholar 

  8. Sarica DY, Türker AR. Clean-Soil Air Water, 2012, 40: 523–530

    Article  CAS  Google Scholar 

  9. López-García I, Rivas RE, Hernández-Córdoba M. Anal Chim Acta, 2012, 743: 69–74

    Article  CAS  Google Scholar 

  10. Zhang Y, Li X, Liu G, Wang Z, Kong T, Tang J, Zhang P, Yang W, Li D, Liu L, Xie G, Wang J. Biol Trace Elem Res, 2011, 144: 854–864

    Article  CAS  Google Scholar 

  11. Abdolmohammad-Zadeh H, Jouyban A, Amini R, Sadeghi G. Microchim Acta, 2013, 180: 619–626

    Article  CAS  Google Scholar 

  12. Yu LP, Yan XP. At Spectrosc, 2004, 25: 145–153

    CAS  Google Scholar 

  13. Wu Y, Zhan S, Xu L, Shi W, Xi T, Zhan X, Zhou P. Chem Commun 2011, 47: 6027–6029

    Article  CAS  Google Scholar 

  14. Shah AQ, Kazi TG, Baig JA, Afridi HI, Arain MB. Food Chem, 2012, 134: 2345–2349

    Article  CAS  Google Scholar 

  15. Ye BC, Yin BC. Angew Chem Int Ed, 2008, 47: 8386–8389

    Article  CAS  Google Scholar 

  16. Lou TT, Chen L, Zhang CR, Kang Q, You H, Shen D, Chen L. Anal Methods, 2012, 4: 488–491

    Article  CAS  Google Scholar 

  17. Du J, Liu MY, Lou XH, Zhao T, Wang Z, Xue Y, Zhao J, Xu Y. Anal Chem, 2012, 84: 8060–8066

    Article  CAS  Google Scholar 

  18. Chansuvarn W, Tuntulani T, Imyim A. TrAC-Trends Anal Chem, 2014, 65: 83–96

    Article  CAS  Google Scholar 

  19. Duan JL, Zhan JH. Sci China Mater, 2015, 58: 223–240

    Article  Google Scholar 

  20. Fleischmann M, Hendra PJ, Mcquillan AJ. Chem Phys Lett, 1974, 26: 163–166

    Article  CAS  Google Scholar 

  21. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Phys Rev Lett, 1997, 78: 1667–1670

    Article  CAS  Google Scholar 

  22. Nie SM, Emory SR. Scinece, 1997, 275: 1102–1106

    Article  CAS  Google Scholar 

  23. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Chem Rev, 1999, 99: 2957–2976

    Article  CAS  Google Scholar 

  24. Campion A, Kambhampati P. Chem Soc Rev, 1998, 27: 241–250

    Article  CAS  Google Scholar 

  25. Michaels AM, Brus L. J Phys Chem B, 2000, 104: 11965–11971

    Article  CAS  Google Scholar 

  26. Han D, Lim SY, Kim BJ, Piao L, Chung TD. Chem Commun, 2010, 46: 5587–5589

    Article  CAS  Google Scholar 

  27. Kang T, Yoo SM, Yoon I, Lee S, Choo J, Lee SY, Kim B. Chem-Eur J, 2011, 17: 2211–2214

    Article  CAS  Google Scholar 

  28. Ding XF, Kong LT, Wang J, Fang F, Li DD, Liu JH. ACS Appl Mater Interfaces, 2013, 5: 7072–7078

    Article  CAS  Google Scholar 

  29. Lee C, Choo J. Bull Korean Chem Soc, 2011, 32: 2003–2007

    Article  CAS  Google Scholar 

  30. Ma W, Sun MZ, Xu LG, Wang L, Kuang H, Xu C. Chem Commun, 2013, 49: 4989–4991

    Article  CAS  Google Scholar 

  31. Xu LG, Yin HH, Ma W, Kuang H, Wang L, Xu C. Biosens Bioelectron, 2014, 67: 472–476

    Article  CAS  Google Scholar 

  32. Li S, Xu LG, Ma W, Kuang H, Wang L, Xu C. Small, 2015, 11: 3435–3439

    Article  CAS  Google Scholar 

  33. Liu M, Wang ZY, Zong SF, Chen H, Zhu D, Wu L, Hu G, Cui Y. ACS Appl Mater. Interf, 2014, 6: 7371–7379

    Article  CAS  Google Scholar 

  34. Lia F, Wanga J, Laia Y, Wua C, Sunb S, Heb Y, Mab H. Biosens Bioelectron, 2013, 39: 82–87

    Article  CAS  Google Scholar 

  35. Cecchini MP, Turek VA, Demetriadou A, Britovsek G, Welton T, Kornyshev AA, Wilton-Ely JDET, Edel JB. Adv Opt Mater, 2014, 2: 966–977

    Article  CAS  Google Scholar 

  36. Wang XF, Shen YH, Xie AJ, Li SK, Cai Y, Wang Y, Shu HY. Biosens Bioelectron, 2011, 26: 3063–3067

    Article  CAS  Google Scholar 

  37. Wang XF, Shen YH, Xie AJ, Chen SH. Mater Chem Phys, 2013, 140: 487–492

    Article  CAS  Google Scholar 

  38. Kang Y, Wu T, Liu BX, Wang X, Du Y. Microchim Acta, 2014, 181: 1333–1339

    Article  CAS  Google Scholar 

  39. Bothra S, Solanki JN, Sahoo SK. Sensor Actuat B-Chem, 2013, 188: 937–943

    Article  CAS  Google Scholar 

  40. Chai F, Wang C, Wang TT, Ma ZF, Su ZM. Nanotechnology, 2010, 21: 862–865

    Google Scholar 

  41. Chen SH, Liu DB, Wang ZH, Sun X, Cui D, Chen X. Nanoscale, 2013, 5: 6731–6735

    Article  CAS  Google Scholar 

  42. Guerrini L, Rodriguez-Loureiro I, Correa-Duarte MA, Lee YH, Ling XY, Javier Garcia De Abajo F, Alvarez-Puebla RA. Nanoscale, 2014, 6: 8368–8375

    Article  CAS  Google Scholar 

  43. Ly NH, Joo S. Bull Korean Chem Soc, 2015, 36: 226–229

    Google Scholar 

  44. Liang AH, Shang GY, Ye LL, Wen G, Luo Y, Liu Q, Zhang X, Jiang Z. RSC Adv, 2015, 5: 21326–21331

    Article  CAS  Google Scholar 

  45. Cao C, Zhang J, Li SZ, Xiong QH. Small, 2014, 10: 3252–3256

    Article  CAS  Google Scholar 

  46. Eshkeiti A, Reddy ASG, Narakathu BB, Joyce MK, Bazuin BJ, Atashbar MZ. IEEE Sensor, 2012: 434–437

    Google Scholar 

  47. Eshkeiti A, Narakathu BB, Reddy ASG, Moorthi A, Atashbar MZ, Rebrosova E, Rebros M, Joyce M. Sensor Actuat B-Chem, 2012, 171: 705–711

    Article  CAS  Google Scholar 

  48. Eshkeiti A, Narakathu BB, Reddy ASG, Moorthi A, Atashbar MZ. Procedia Eng, 2011, 25: 338–341

    Article  CAS  Google Scholar 

  49. Tan EZ, Yin PG, Lang XF, Zhang HY, Guo L. Spectro Acta Pt A-Molec Biomolec Spectr, 2012, 97: 1007–1012

    Article  CAS  Google Scholar 

  50. Du YX, Liu RY, Liu BH, Wang SH, Han MY, Zhang Z. Anal Chem, 2013, 85: 3160–3165

    Article  CAS  Google Scholar 

  51. Luo YH, Li K, Wen GQ, Liu Q, Liang A, Jiang Z. Plasmonics, 2012, 7: 461–468

    Article  CAS  Google Scholar 

  52. Li P, Liu HL, Yang LB, Liu J. Talanta, 2013, 106: 381–387

    Article  CAS  Google Scholar 

  53. Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray PC. Chem Commun, 2011, 47: 10326–10328

    Article  CAS  Google Scholar 

  54. Ma PY, Liang FH, Yang QQ, Wang D, Sun Y, Wang XH, Gao D, Song D. Microchim Acta, 2014, 181: 975–981

    Article  CAS  Google Scholar 

  55. Cho H, Baker B, Wachsmann-Hogiu S, Pagba CV, Laurence T, Lane S, Lee LP, Tok BH. Nano Lett, 2008, 8: 4386–4390

    Article  CAS  Google Scholar 

  56. Liu CW, Huang CC, Chang HT. Anal Chem, 2009, 81: 2383–2387

    Article  CAS  Google Scholar 

  57. Kim H, Kang T, Lee H, Ryoo H, Yoo SM, Lee SY, Kim B. Chem-Asian J, 2013, 8: 3010–3014

    Article  CAS  Google Scholar 

  58. Kang T, Yoo SM, Kang M, Lee H, Kim H, Lee SY, Kim B. Lab Chip, 2012, 12: 3077–3081

    Article  CAS  Google Scholar 

  59. Chung E, Gao R, Ko J, Choi N, Lim DW, Lee EK, Chang SI, Choo J. Lab Chip, 2012, 13: 260–266

    Article  Google Scholar 

  60. Ren W, Zhu CZ, Wang EK. Nanoscale, 2012, 4: 5902–5909

    Article  CAS  Google Scholar 

  61. Ji W, Chen L, Xue XX, Guo ZN, Yu Z, Zhao B, Ozaki Y. Chem Commun, 2013, 49: 7334–7336

    Article  CAS  Google Scholar 

  62. Fu SY, Guo XY, Wang H, Yang TX, Wen Y, Yang HF. Sensor Actuat B-Chem, 2014, 199: 108–114

    Article  CAS  Google Scholar 

  63. Kandjani AE, Sabri YM, Mohammad-Taheri M, Bansal V, Bhargava SK. Environ Sci Technol, 2015, 49: 1578–1584

    Article  CAS  Google Scholar 

  64. Li K, Liang AH, Jiang CN, Li F, Liu Q, Jiang Z. Talanta, 2012, 99: 890–896

    Article  CAS  Google Scholar 

  65. Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M. ACS Nano, 2013, 7: 4595–4600

    Article  CAS  Google Scholar 

  66. Wang YZ, Chen S, Wei C, Xu MM, Yao JL, Li Y, Deng A, Gu R. Chem Commun, 2014, 50: 9112–9114

    Article  CAS  Google Scholar 

  67. Wang G, Lim C, Chen L, Chon H, Choo J, Hong J, Demello AJ. Anal Bioanal Chem, 2009, 394: 1827–1832

    Article  CAS  Google Scholar 

  68. Wang CW, Lin ZH, Roy P, Chang HT. Front Chem, 2013, 1: 20

    Google Scholar 

  69. Chen LX, Qi N, Wang XK, Chen L, You H, Li J. RSC Adv, 2014, 4: 15055–15060

    Article  CAS  Google Scholar 

  70. Grasseschi D, Zamarion VM, Araki K, Toma HE. Anal Chem, 2010, 82: 9146–9149

    Article  CAS  Google Scholar 

  71. Ma YM, Liu HL, Qian K, Yang LB, Liu JH. J Colloid Interf Sci, 2012, 386: 451–455

    Article  CAS  Google Scholar 

  72. Duan JL, Yang M, Lai YC, Yuan JP, Zhan JH. Anal Chim Acta, 2012, 723: 88–93

    Article  CAS  Google Scholar 

  73. Ganbold EO, Park JH, Ock KS, Joo SW. Bull Korean Chem Soc, 2011, 32: 519–523

    Article  CAS  Google Scholar 

  74. Liu M, Wang ZY, Pan LQ, Cui YP, Liu YM. Biosens Bioelectron, 2015, 69: 142–147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Yang, B., Yang, Y. et al. SERS-based mercury ion detections: principles, strategies and recent advances. Sci. China Chem. 59, 16–29 (2016). https://doi.org/10.1007/s11426-015-5504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5504-9

Keywords

Navigation