Skip to main content
Log in

Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): a mini-review

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Our pristine nature is getting contaminated by plastic pollutants day by day. Plastic bottles are ending up in landfills and oceans in bulk and micro form. The use of microplastic (plastic particles less than 5 mm) in personal care products has been banned recently, as the accumulation of microplastic is a major concern to marine life and food chain. Even microplastic rain has been reported at certain regions. This mini-review provides an overview of different types of Surface Enhanced Raman Spectroscopy (SERS) substrates such as: (a) Metal nanoparticle in suspension (b) Metal nanoparticle immobilized on solid substrate (c) Nanofabrication of solid substrate. This article also highlights the label-free strategies of analyte retention on SERS substrate such as (i) Direct binding (ii) Electrostatic interaction (iii) Chemical affinity (iv) Mechanical trapping. A state-of-art literature review elucidates how these SERS methodologies can be used to effectively detect microplastic pollutant in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright: 2014 Royal Society of Chemistry

Fig. 3

Copyright: 2009 Elsevier

Fig. 4

Copyright: 2019 Nature

Fig. 5

Copyright: 2020 American Chemical Society

Similar content being viewed by others

Data Availability

This is a review article and all data can be found in public domain.

References

  1. Akarsu C, Kumbur H, Kideys AE (2021) Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol. https://doi.org/10.2166/wst.2021.356

    Article  Google Scholar 

  2. Boyle K, Ormeci B (2020) Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water 12:2633. https://doi.org/10.3390/w12092633

    Article  Google Scholar 

  3. JP Da Costa, AC Duarte, TAP Rocha-Santos (2017). Microplastics - occurence, fate and behaviour in the environment. In: Comprehensive analytical chemistry (Eds: Rocha-Santos TAP, Duarte AC), Elsevier BV: Amsterdam, The Netherlands, 75, pp 1–24

  4. Prietl B, Meindl C, Roblegg E, Pieber T, Lanzer G, Fröhlich E (2014) Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol 30(1):1–16. https://doi.org/10.1007/s10565-013-9265-y

    Article  Google Scholar 

  5. Prüst M, Meijer J, Westerink RHS (2020) The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 17:24. https://doi.org/10.1186/s12989-020-00358-y

    Article  Google Scholar 

  6. Lorena M, Rios Mendoza AC, Jones PR (2015) Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environ Chem 12(5):611–617. https://doi.org/10.1071/EN14236

    Article  Google Scholar 

  7. Liu L, Fokkink R, Koelmans AA (2016) Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. Environ Toxicol Chem 35(7):1650–1655. https://doi.org/10.1002/etc.3311

    Article  Google Scholar 

  8. Amelia TSM, Khalik WMAWM, Ong MC et al (2021) Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog Earth Planet Sci 8:12. https://doi.org/10.1186/s40645-020-00405-4

    Article  Google Scholar 

  9. Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195. https://doi.org/10.1016/j.ecss.2015.12.003

    Article  Google Scholar 

  10. Schrank I, Trotter B, Dummert J, Scholz-Böttcher BM, Löder MGJ, Laforsch C (2019) Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environ Pollut 255(2):113233. https://doi.org/10.1016/j.envpol.2019.113233

    Article  Google Scholar 

  11. Chen Q, Allgeier A, Yin D, Hollert H (2019) Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int 130:104938. https://doi.org/10.1016/j.envint.2019.104938

    Article  Google Scholar 

  12. Lin L, Bi X, Gu Y, Wang F, Ye J (2021) Surface-enhanced Raman scattering nanotags for bioimaging. J Appl Phys 129:191101. https://doi.org/10.1063/5.0047578

    Article  Google Scholar 

  13. Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodriguez-Lorenzo L, Alvarez-Puebla RA, Liz-Marzan LM (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7:S435–S450. https://doi.org/10.1098/rsif.2010.0125.focus

    Article  Google Scholar 

  14. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ (2014) Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods 6:9116–9123. https://doi.org/10.1039/C4AY02112F

    Article  Google Scholar 

  15. Bailey MR, Scott Martin R, Schultz ZD (2016) Role of surface adsorption in the surface-enhanced Raman scattering and electrochemical detection of neurotransmitters. J Phys Chem C 120(37):20624–20633. https://doi.org/10.1021/acs.jpcc.6b01196

    Article  Google Scholar 

  16. Mosier-Boss PA (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:142–171. https://doi.org/10.3390/nano7060142

    Article  Google Scholar 

  17. T Dey, CJ O’Connor (2005). Synthesis of polymer-coated magnetic nanoparticles. In: Laudon M, editor. Technical proceedings of the 2005 NSTI nanotechnology conference and trade show. 2:13–16.

  18. Yadav OP, Yadav YK, Das AR, Dey T, Kakkar S, Singla ML (2008) Catalytic oxidation of carbon monoxide using platinum nanoparticles synthesized in microemulsion. Asian Journal of Scientific Research 1(1):79–84. https://doi.org/10.3923/ajsr.2008.79.84

    Article  Google Scholar 

  19. Dey T (2011) Colloidal crystalline array of hydrogel-coated silica nanoparticles: effect of temperature and core size on photonic properties. J Sol-Gel Sci Technol 57(2):132–141. https://doi.org/10.1007/s10971-010-2333-3

    Article  Google Scholar 

  20. Péron O, Rinnert E, Lehaitre M, Crassous P, Compère C (2009) Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta 79(2):199–204. https://doi.org/10.1016/j.talanta.2009.03.043

    Article  Google Scholar 

  21. Dey T (2012) Magnetic nanoparticles and cellulosic nanofibers to remove arsenic and other heavy metals from water. In: Dey T (ed) Nanotechnology for water purification. Universal Publishers, Boca Raton, Florida, pp 1–28

    Google Scholar 

  22. Dey T, Naughton D (2019) Nano-porous sol-gel derived hydrophobic glass coating for increased light transmittance through greenhouse. Mater Res Bull 116:126–130. https://doi.org/10.1016/j.materresbull.2019.04.027

    Article  Google Scholar 

  23. Dey T (2021) UV-reflecting sintered nano-TiO2 thin film on glass for anti-bird strike application. Surf Eng 37(6):688–694. https://doi.org/10.1080/02670844.2020.1796900

    Article  Google Scholar 

  24. Bao L, Mahurin SM, Haire RG, Dai S (2003) Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Anal Chem 75(23):6614–6620. https://doi.org/10.1021/ac034791

    Article  Google Scholar 

  25. Dey T (2011) Nano-scale height manipulation in sputter-deposited photolithographic patterns. J Optoelectron Adv Mater 13(3):251–254

    Google Scholar 

  26. Teixeira A, Hernández-Rodríguez JF, Wu L, Oliveira K, Kant K, Piairo P, Diéguez L, Abalde-Cela S (2019) Microfluidics-driven fabrication of a low cost and ultrasensitive SERS-based paper biosensor. Appl Sci 9:1387–1400. https://doi.org/10.3390/app9071387

    Article  Google Scholar 

  27. Zhang X, Zhang H, Yan S, Zeng Z, Huang A, Liu A, Yuan Y, Huang Y (2019) Organic molecule detection based on SERS in microfluidics. Sci Rep 9:17634–17640. https://doi.org/10.1038/s41598-019-53478-7

    Article  Google Scholar 

  28. Xu G, Cheng H, Jones R, Feng Y, Gong K, Li K, Fang X, Tahir MA, Valev VK, Zhang L (2020) Surface-enhanced Raman spectroscopy facilitates the detection of microplastics <1 μm in the environment. Environ Sci Technol 54:15594–15603. https://doi.org/10.1021/acs.est.0c02317

    Article  Google Scholar 

  29. Lv L, He L, Jiang S, Chen J, Zhou C, Qu J, Lu Y, Hong P, Sun S, Li C (2020) In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci Total Environ 728:138449. https://doi.org/10.1016/j.scitotenv.2020.138449

    Article  Google Scholar 

  30. Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A (2021) Detection of sub-micro- and nanoplastic particles on gold nanoparticle-based substrates through surface-enhanced Raman scattering (SERS) spectroscopy. Nanomaterials 11:1149–1166. https://doi.org/10.3390/nano11051149

    Article  Google Scholar 

  31. E Okoko, B Baruah (2021). 25th Annual symposium of student scholars. Kennesaw State University

  32. Shvalya V, Santhosh NM, Kosicek M, Vengust D, Olenik J, Podlogar M, Zavašnik J, Filipič G, Modic M, Hojnik N (2021) Plasmonic carbonaceous nanotemplates for microplastics raman detection. ECS Meet Abstr MA 2021–01:1638

    Article  Google Scholar 

  33. Barros J, Seena S (2021) Plastisphere in freshwaters: an emerging concern. Environ Pollut 290:118123. https://doi.org/10.1016/j.envpol.2021.118123

    Article  Google Scholar 

  34. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. https://doi.org/10.1021/es401288x

    Article  Google Scholar 

  35. Lares M, Ncibi MC, Sillanpaa M, Sillanpaa M (2019) Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environ Sci Pollut Res 26:12109–12122. https://doi.org/10.1007/s11356-019-04584-6

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Dey.

Ethics declarations

Conflict of interests

The author declares that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, T. Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): a mini-review. Nanotechnol. Environ. Eng. 8, 41–48 (2023). https://doi.org/10.1007/s41204-022-00223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00223-7

Keywords

Navigation