Skip to main content
Log in

Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery

  • Reviews
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Since nucleic acids (DNA and RNA) play very important roles in cells, they are molecular targets of many clinically used drugs, such as anticancer drugs and antibiotics. Because of clinical demands for treating various deadly cancers and drug-resistant strains of pathogens, there are urgent needs to develop novel therapeutic agents. Targeting nucleic acids hasn’t been the mainstream of drug discovery in the past, and the lack of 3D structural information for designing and developing drug specificity is one of the main reasons. Fortunately, many important structures of nucleic acids and their protein complexes have been determined over the past decade, which provide novel platforms for future drug design and discovery. In this review, we describe some useful nucleic acid structures, particularly their interactions with the ligands and therapeutic candidates or even drugs. We summarize important information for designing novel potent drugs and for targeting nucleic acids and protein-nucleic acid complexes to treat cancers and overcome the drug-resistant problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blundell TL. Structure-based drug design. Nature, 1996, 384: 23–26

    Article  CAS  Google Scholar 

  2. Ghosh AK, Sridhar PR, Leshchenko S, Hussain AK, Li J, Kovalevsky AY, Walters DE, Wedekind JE, Grum-Tokars V, Das D, Koh Y, Maeda K, Gatanaga H, Weber IT, Mitsuya H. Structure-based design of novel HIV-1 protease inhibitors to combat drug resistance. J Med Chem, 2006, 49(17): 5252–5261

    Article  CAS  Google Scholar 

  3. Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Human Gen, 2008, 122(6): 565–581

    Article  CAS  Google Scholar 

  4. Evan GI, Littlewood DT. The role of c-myc in cell growth. Curr Opin Genet Dev, 1993, 3: 44–49

    Article  CAS  Google Scholar 

  5. David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010, 463: 364–368

    Article  CAS  Google Scholar 

  6. Gostissa M, Yan CT, Bianco JM, Cogné M, Pinaud E, Alt FW. Long-range oncogenic activation of Igh-c-myc translocations by the Igh regulatory region. Nature, 2009, 462: 803–807

    Article  CAS  Google Scholar 

  7. Orkin SH, Porcher C, Fujiwara Y, Visvader J, Wang LC. Intersections between blood cell development and leukemia genes. Cancer Res, 1999, 59(7): 1784–1787

    Google Scholar 

  8. Small MB, Hay N, Schwab M, Bishop JM. Neoplastic transformation by the human gene N-myc. Mol Cell Biol, 1987, 7(5): 1638–1645

    CAS  Google Scholar 

  9. Prescott JE, Osthus RC, Lee LA, Lewis BC, Shim H, Barrett JF, Guo Q, Hawkins AL, Griffin CA, Dang CV. A Novel c-Myc-responsive gene, jpo1, participates in neoplastic transformation. J Biol Chem, 2001, 276: 48276–48284

    CAS  Google Scholar 

  10. Katan T. Resistance to 3,5-dichlorophenyl-N-cyclic imide (’dicarboximide’) fungicides in the grey mould pathogen. Botrytis cinerea on protected crops. Plant Path, 1982, 31(2): 133–141

    CAS  Google Scholar 

  11. Threlfall EJ, Ward LR, Frost JA, Willshaw JA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol, 2000, 62(1–2): 1–5

    Article  CAS  Google Scholar 

  12. George AJ. Antimicrobial-resitant pathogens in the 1990s. Ann Rev Med, 1996, 47}: 169–1

    Google Scholar 

  13. Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, Rotman M, Gershenson DM, Mutch DG. Pelvic radiation with concurrent chemotherapy with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med, 1999, 340: 1137–1143

    Article  CAS  Google Scholar 

  14. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, Clarke-Pearson DL, Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med, 1999, 340: 1144–1153

    Article  CAS  Google Scholar 

  15. Keys HM, Bundy BN, Stehman FB, Muder-spach LI, Chafe WE, Suggs CL, Walker JL, Gersell D. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma, N Engl J Med, 1999, 340: 1154–1161

    Article  CAS  Google Scholar 

  16. Wang K, Lu JF, Li RC. The events that occur when cisplatin encounters cells. Coord Chem Rev, 1996, 151: 53–88

    Article  CAS  Google Scholar 

  17. Lippard SJ. New chemistry of an old molecule: cis-[Pt(NH3)2Cl2]. Science, 1982, 218: 1075–1082

    Article  CAS  Google Scholar 

  18. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377: 649–652

    Article  CAS  Google Scholar 

  19. Zlatanova J, Yaneva J, Leuba SH. Proteins that specifically recognize cisplatin-damaged DNA: A clue to anticancer activity of cisplatin. FASEB J, 1998, 12: 791–799

    CAS  Google Scholar 

  20. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ. Molecular basis for recognition of cisplatin-modified DNA by high-mobility group proteins. Nature, 1999, 399: 708–712

    Article  CAS  Google Scholar 

  21. Farrell N, Kelland LR, Roberts JD, Van Beusichem M. Activation of the trans geometry in platinum antitumor complexes: A survey of the cytotoxicity of trans complexes containing planar ligands in murine L1210 and human tumor panels and studies on their mechanism of action. Cancer Res, 1992, 52: 5065–5072

    CAS  Google Scholar 

  22. Farrell N. Current status of structure-activity relationships of platinum anticancer drugs: Activation of the trans-geometry. Met Ions Biol Sys, 1996, 32: 603–639

    CAS  Google Scholar 

  23. Coluccia M, Nassi A, Loseto F, Boccarelli A, Mariggio MA, Giordano D, Intini FP, Caputo P, Natile G. A trans-platinum complex showing higher antitumor activity than the cis-congeners. J Med Chem, 1993, 36: 510–512

    Article  CAS  Google Scholar 

  24. Najajreh Y, Khazanov E, Jawbry S, Ardeli-Tzaraf Y, Perez JM. Kasparkova J, Brabec V, Barenholz Y, Gibson D. Cationic nonsymmetric transplatinum complexes with piperidinopiperidine ligands. Preparation, characterization, in vitro cytotoxicity, in vivo toxicity, and anticancer efficacy studies. J Med Chem, 2006, 49: 4665–4673

    Article  CAS  Google Scholar 

  25. Richards AD, Rodgers A. Synthetic metallomolecules as agents for the control of DNA structure. Chem Soc Rev, 2007, 36: 471–483

    Article  CAS  Google Scholar 

  26. Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, Wang AH. Structural comparison of anticancer drug-DNA complexes: Adriamycin and daunomycin. Biochemistry, 1990, 29: 2538–2549

    Article  CAS  Google Scholar 

  27. Shi K, Pan B, Sundaralingam M. Structure of a B-form DNA/RNA chimera (dC)(rG)d(ATGG) complexed with daunomycin at 1.5A resolution. Acta Crystalloghr, Sect D, 2003, 59: 1377–1383

    Article  CAS  Google Scholar 

  28. Wang AH, Gao YG, Liaw YC, Li YK. Formaldehyde cross-links daunorubicin and DNA efficiently: HPLC and X-ray diffraction studies. Biochemistry, 1991, 30: 3812–3815

    Article  CAS  Google Scholar 

  29. Cuesta-Seijo JA, Sheldrick GM. Structures of complexes between echinomycin and duplex DNA. Acta Crystallogr, Sect D, 2005, 61: 442–448

    Article  CAS  Google Scholar 

  30. Gao Q, Williams LD, Egli M, Rabinovich D, Chen SL, Quigley GJ, Rich A. Drug-induced DNA repair: X-ray structures of a DNA-ditercalinium complex. Proc Natl Acad Sci USA, 1991, 88: 2422–2426

    Article  CAS  Google Scholar 

  31. Gao Q, Williams LD, Egli M, Rabinovic D, Chen SL, Quigley GL, Rich A, Wartell RM, Larson JE, Wells RE. Netropsin: A specific probe for AT regions of duplex deoxyribonucleic acid. J Biol Chem, 1974, 249: 6719–6731

    Google Scholar 

  32. Zimmer C. Effects of the antibiotics netropsin and distamycin A on the structure and function of nucleic acids. Mol Biol, 1975, 15: 285–318

    CAS  Google Scholar 

  33. Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci USA, 1985, 82(5): 1376–1380

    Article  CAS  Google Scholar 

  34. Schultz PG, Dervan PB. Distamycin and penta-N-methylpyrroleca -rboxamide binding sites on native DNA. A comparison of methidiumpropyl-EDTA-Fe(II) footprinting and DNA affinity cleaving. J Biomol Struct Dyn, 1984, 1(5): 1133–1147

    CAS  Google Scholar 

  35. Nunn CM, Garman E, Neidle S. Crystal structure of the DNA decamer d(CGCAATTGCG) complexed with the minor groove binding drug netropsin. Biochemistry. 1997, 36(16): 4792–4799

    Article  CAS  Google Scholar 

  36. Chen X, Mitra SN, Rao ST, Sekar K, Sundaralingam M. A novel end-to-end binding of two netropsins to the DNA decamers d(CCCCCIIIII)2, d(CCCBr5CCIIIII)2 and d(CBr5CCCCIIIII)2. Nucleic Acids Res, 1998, 26(23): 5464–5471

    Article  CAS  Google Scholar 

  37. Pjura PE, Grzeskowiak K, Dickerson RE. Binding of Hoechst 33258 to the minor groove groove of B-DNA. J Mol Biol, 1987, 197: 257–271

    Article  CAS  Google Scholar 

  38. Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE. Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. J Mol Biol, 1985, 183: 553–563

    Article  CAS  Google Scholar 

  39. Mitra SN, Wahl MC, Sundaralingam M. Structure of the side-by-side binding of distamycin tod(GTATATAC)2. Acta Crystallogr, Sect D, 1999, 55: 602–609

    Article  CAS  Google Scholar 

  40. Chenoweth DM, Dervan PB. Allosterin modulation of DNA by small molecules. Proc Natl Acad Sci USA, 2009, 106: 13175–13179

    Article  CAS  Google Scholar 

  41. Goodwin KD, Long EC, Georgiadis MM. A host-guest approach for determining drug-DNA interactions: An example using netropsin. Nucleic Acids Res. 2005, 33(13): 4106–4116

    Article  CAS  Google Scholar 

  42. Nickols NG, Jacobs CS, Farkas ME, Dervan PB. Improved nuclear localization of DNA-binding polyamides. Nucleic Acids Res, 2007, 35: 363–370

    Article  CAS  Google Scholar 

  43. Nickols NG, Dervan PB. Suppression of androgen receptormediated gene expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci USA, 2007, 104: 10418–10423

    Article  CAS  Google Scholar 

  44. Jacobs CS, Dervan PB. Modifications at the C-terminus to improve pyrrole-imidazole polyamide activity in cell culture. J Med Chem. 2009, 52(23): 7380–7388

    Article  CAS  Google Scholar 

  45. Le Doan T, Perrouault L, Praseuth D, Habhoub N, Decout JL, Thuong NT. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res, 1987, 15: 7749–7760

    Article  Google Scholar 

  46. Moser HE, Dervan PB. Sequence-specific cleavage of double helical DNA by triple helix formation. Science, 1987, 238: 645–650

    Article  CAS  Google Scholar 

  47. Malkov VA, Soyfer VN, Frank-Kamenetskii MD. Effect of intermolecular triplex formation on the yield of cyclobutane photodimers in DNA. Nucleic Acids Res, 1992, 20(18): 488948–95

    Article  Google Scholar 

  48. Mirkin SM, Frank-Kamenetskii MD. H-DNA and related structures. Annu Rev Biophys Biomol Struct, 1994, 23: 541–576

    Article  CAS  Google Scholar 

  49. Davis TL, Firulli AB, Kinniburgh AJ. Ribonucleoprotein and protein factors bind to an H-DNA-forming cmyc DNA element: Possible regulators of the c-myc gene. Proc Natl Acad Sci USA, 1989, 86: 9682–9686

    Article  CAS  Google Scholar 

  50. Zain R, Sun JS. Do natural DNA triple-helical structures occur and function in vivo? Cell Mol Life Sci, 2003, 60: 862–870

    CAS  Google Scholar 

  51. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991, 254: 1497–1500

    Article  CAS  Google Scholar 

  52. Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, Capasso D, Saviano M, Pedone C. Insights into peptide nucleic acid (PNA) structural features: the crystal structure of D-lysine-based chiral PNA-DNA duplex, Proc Natl Acad Sci USA, 2003 100, 12021–12026

    Article  CAS  Google Scholar 

  53. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogenbonding rules. Nature, 1993, 365: 566–568

    Article  CAS  Google Scholar 

  54. Betts L, Josey JA, Veal JM, Jordan SR. A nucleic acid triplex formed by a nucleic acid-DNA complex. Science, 1995, 270: 1838–1841

    Article  CAS  Google Scholar 

  55. Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE. Cell-dependent differential cellular uptake of PNA, peptides, and PNApeptide conjugates. Antisense Nucl Acid Drug Develop, 2002, 12: 51–63

    Article  CAS  Google Scholar 

  56. Zhou P, Wang MM, Du L, Fisher GW, Waggoner A, Ly DH. Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc, 2003, 125: 6878–6879

    Article  CAS  Google Scholar 

  57. Dragulescu-Andrasi A, Zhou P, He GF, Ly DH. Cell-permeable GPNA with appropriate backbone stereochemistry and spacing binds sequencespecifically to RNA. Chem Comm, 2005, 244-246

  58. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM. Nanoparticles deliver Triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther, 2010, doi:10.1038/mt.2010 doi:10.1038/mt.2010

  59. Sinden RR, Potaman VN, Oussatcheva EA, Pearson CE, Lyubchenko YL, Shlyakhtenko LS. Triplet repeat DNA structures and human genetic disease: Dynamic mutations from dynamic DNA. J Biosci, 2002, 27(1): 53–65

    Article  CAS  Google Scholar 

  60. Pearson CE, Sinden RR, Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry, 1996, 35: 5041–5053

    Article  CAS  Google Scholar 

  61. Oleksy A, Blanco AG, Boer R, Usón I, Aymamí J, Rodger A, Hannon MJ, Coll M. Molecular recognition of a three-way DNA junction by a metallosupramolecular helicate. Angew Chem Int Ed Engl, 2006, 13: 45(8):1227–1231

    Article  Google Scholar 

  62. Cerasino L, Hannon MJ, Sletten E. DNA three-way junction with a dinuclear iron(II) supramolecular helicate at the center: A NMR structural study. Inorg Chem, 2007, 46(16): 6245–6251

    Article  CAS  Google Scholar 

  63. Ortiz-Lombardía M, González A, Eritja R, Aymamí J, Azorín F, Coll M. Crystal structure of a DNA Holliday junction. Nat Struct Biol, 1999, 6(10): 913–917

    Article  Google Scholar 

  64. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Cur§tin NJ, Helleday T, Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434: 913–917

    Article  CAS  Google Scholar 

  65. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005 434: 917–921

    Article  CAS  Google Scholar 

  66. Brogden AL, Hopcroft NH, Searcey M, Cardin CJ. Ligand bridging of the DNA Holliday junction: molecular recognition of a stacked-X four-way junction by a small molecule. Angew Chem Int Ed Engl. 2007, 46(21): 3850–3854.

    Article  CAS  Google Scholar 

  67. Simonsson T, G-quadruplex DNA structures-variations on a theme. Biol Chem, 2001, 621-628

  68. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA, 2001, 98: 8572–8577

    Article  CAS  Google Scholar 

  69. Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417: 876–880

    Article  CAS  Google Scholar 

  70. Haider SM, Parkinson GN, Neidle S. Crystal structure of the potassiumform of an Oxytricha nova G-quadruplex. J Mol Biol, 2002, 320: 189–200

    Article  CAS  Google Scholar 

  71. Gill ML, Strobel SA, Loria JP. Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex, Nucleic Acids Res, 2006, 34: 4506–4514

    Article  CAS  Google Scholar 

  72. Hazel P, Parkinson GN, Neidle S. Topology variation and loop structural homology in crystal and simulated structures of a bimolecular DNA quadruplex. J Am Chem Soc, 2006, 128: 5480–5487

    Article  CAS  Google Scholar 

  73. Deng J, Xiong Y, Sundaralingam M. X-ray analysis of an RNA tetraplex (UGGGGU)(4) with divalent Sr(2þ) ions at subatomic resolution. Proc Natl Acad Sci USA, 2001, 98: 13665–13670

    Article  CAS  Google Scholar 

  74. Pan B, Shi K, Sundaralingam M. Crystal structure of an RNA quadruplex containing inosine tetrad: Implications for the roles of NH2 group in purine tetrads. J Mol Biol, 2006, 363: 451–459

    Article  CAS  Google Scholar 

  75. Phillips K, Dauter Z, Murchie AI, Lilley DM, Luisi B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution, J Mol Biol, 1997, 273: 171–182

    Article  CAS  Google Scholar 

  76. Haider SM, Parkinson GN, Neidle S. Structure of a G-quadruplexligand complex. J Mol Biol, 2003, 326: 117–125

    Article  CAS  Google Scholar 

  77. Clark GR, Pytel PD, Squire CJ, Neidle S. Structure of the first parallel DNA quadruplex complex. J Am Chem Soc, 2003, 125: 4066–4067

    Article  CAS  Google Scholar 

  78. Parkinson GN, Ghosh R, Neidle S. Structural basis for binding of porphyrin to human telomeres. Biochemistry, 2007, 46: 2390–2397

    Article  CAS  Google Scholar 

  79. Todd AK, Johnston M, Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res, 2005, 33: 2901–2907

    Article  CAS  Google Scholar 

  80. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res, 2005, 33: 2908–2916

    Article  CAS  Google Scholar 

  81. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription, Proc Natl Acad Sci USA, 2002, 99: 11593–11598

    Article  CAS  Google Scholar 

  82. Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol, 2004, 5: 451–463

    Article  CAS  Google Scholar 

  83. Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol, 2005, 15: 342–348

    Article  CAS  Google Scholar 

  84. Winkler WC, Breaker RR. Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol, 2005, 59: 487–517

    Article  CAS  Google Scholar 

  85. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science, 2004, 306: 275–279

    Article  CAS  Google Scholar 

  86. Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev, 2003, 17: 2688–2697

    Article  CAS  Google Scholar 

  87. Lee JM, Zhang SH, Saha S, Anna SS, Jiang C, Perkins J.. RNA expression analysis using an antisense Bacillus subtilis genome array. J Bacteriol, 2001, 183: 7371–7380

    Article  CAS  Google Scholar 

  88. Lim J, Winkler WC, Nakamura S, Scott V, Breaker RR, Molecular-recognition characteristics of SAM-binding riboswitches. Angew Chem Int Ed Engl, 2006, 45: 964–968

    Article  CAS  Google Scholar 

  89. Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Nat Acad Sci USA, 2002, 99: 15908–15913

    Article  CAS  Google Scholar 

  90. Wickiser JK, Winkler WC, Breaker RR, Crothers DM. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell, 2005, 18: 49–60.

    Article  CAS  Google Scholar 

  91. Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res, 2004, 32: 143–150

    Article  CAS  Google Scholar 

  92. Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 2002, 419: 952–956

    Article  CAS  Google Scholar 

  93. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem, 2002, 277: 48949–48959

    Article  CAS  Google Scholar 

  94. Kulshina N, Baird NJ, Ferré-D`Amare AR. Recognition of the bacterial second messenger cyclic diguanylate by its cognateriboswitch. Nat Struct Mol Biol, 2009, 16: 1212–1217

    Article  CAS  Google Scholar 

  95. Serganov A, Huang LL, Patel DJ. Conzyme recognition and gene regulation by a flavinmononucleotide riboswitch. Nature, 2009, 458: 233–237

    Article  CAS  Google Scholar 

  96. Garst AD, Heroux A, Rambo RP, Batey RT. Crystal structure of the lysine riboswitch regulatory mRNA element. J Biol Chem, 2008, 283: 22347–22351

    Article  CAS  Google Scholar 

  97. Klein DJ, Edwars TE, Ferré-D’Amare AR. Cocrystal structure of a class I preQ1 riboswitch reveals apseudoknot recognizing an essential hypermodifiednucleobase. Nat Struct Mol Biol, 2009, 16: 343

    Article  CAS  Google Scholar 

  98. Robbins WJ. The pyridine analog of thiamine and the growth of fungi. Proc Natl Acad Sci USA, 1941, 27: 419–422

    Article  CAS  Google Scholar 

  99. Woolley DW, White AGC. Selective reversible inhibition of microbial growth with pyrithiamine. J Exp Med, 1943, 78: 489–497

    Article  CAS  Google Scholar 

  100. Shiota T, Folk JE, Tietze F. Inhibition of lysine utilization in bacteria by S-(betaaminoethyl) cysteine and its reversal by lysine peptides. Arch Biochem Biophys, 1958, 77; 372-377

  101. McCord T, Ravel J, Skinner C, Shive W. dl-4-Oxalysine, an inhibitory analog of lysine. J Am Chem Soc, 1957, 79: 5693–5696

    Article  CAS  Google Scholar 

  102. Matsui K, Wang HC, Hirota T, Matsukawa H, Kasai S. Riboflavin production by roseoflavin-resistant strains of some bacteria. Agric Biol Chem, 1982, 46: 2003–2008

    CAS  Google Scholar 

  103. Berezovskii VM, Stepanov AI, Polyakova NA, Tulchinskaya LS, Kukanova AY. Studies of a group of allo- and isoallxazine. XLVI. Synthesis and biological specificity of amino analogs. Bioorg Khim, 1977, 3: 521–524

    CAS  Google Scholar 

  104. Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns a review. Gene, 1989, 82: 5–30

    Article  CAS  Google Scholar 

  105. Cech TR. Self-splicing of group I introns. Annu Rev Biochem, 1990, 59: 543–568

    Article  CAS  Google Scholar 

  106. Eckstein F, Bramlage B. The hammerhead ribozyme. Biopolymers, 1999, 52: 147–154

    Article  CAS  Google Scholar 

  107. Ruffner D, Dahm S, Uhlenbeck O. Studies on the hammerhead RNA self-cleaving domain. Gene, 1989, 82(1): 31–41

    Article  CAS  Google Scholar 

  108. Lazarev VN, Shmarov MM, Zakhartchouk AN, Yurov GK, Misurina OU, Akopian TA, Grinenko NF, Grodnitskaya NG, Kaverin NV, Naroditsky BS. Inhibition of influenza A virus reproduction by a ribozyme targeted against PB1 mRNA. Antiviral Res, 1999 42: 47–57

    Article  CAS  Google Scholar 

  109. Sakamoto N, Wu CH, Wu GY. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. J Clin Invest, 1996, 98: 2720–2728

    Article  CAS  Google Scholar 

  110. Ideo G, Bellobuono A. New therapies for the treatment of chronic hepatitis C. Curr Pharm Des, 2002, 8: 959–966

    Article  CAS  Google Scholar 

  111. Feng Y, Kong YY, Wang Y, Qi GR. Intracellular inhibition of the replication of hepatitis B virus by hammerhead ribozymes. J Gastroenterol Hepatol, 2001, 16: 1125–1130

    Article  CAS  Google Scholar 

  112. Trang P, Lee K, Kiliani AF, Kim J, Liu F. Effective inhibition of herpes simplex virus 1 gene expression and growth by engineered RNase P ribozyme. Nucleic Acids Res, 2001, 29: 5071–5078

    Article  CAS  Google Scholar 

  113. Trang P, Lee M, Nepomuceno E, Kim J, Zhu H, Liu F. Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc Natl Acad Sci USA, 2000, 97: 5812–5817

    Article  CAS  Google Scholar 

  114. Yamada O, Yu M, Yee JK, Kraus G, Looney D, Wong-Staal F. Intracellular immunization of human T cells with a hairpin ribozyme against human immunodeficiency virus type 1. Gene Ther, 1994, 1:34–45

    Google Scholar 

  115. Bai J, Banda N, Lee NS, Rossi J, Akkina R. RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Ther, 2002, 6: 770–782

    Article  CAS  Google Scholar 

  116. Akkina R, Banerjea A, Bai J, Anderson J, Li MJ, Rossi J. siRNAs, ribozymes and RNA decoys in modelling stem cell-based gene therapy for HIV/AIDS. Anticancer Res, 2003, 23: 1997–1005

    CAS  Google Scholar 

  117. Scherr M, Maurer AB, Klein S, Ganser A, Engels JW, Grez M. Effective reversal of a transformed phenotype by retrovirusmediated transfer of a ribozyme directed against mutant N-ras. Gene Ther, 1998, 5: 1227–1234

    Article  CAS  Google Scholar 

  118. Schwab G, Chavany C, Duroux I, Goubin G, Lebeau J, Helene C, Saisonbehmoaras T. Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated H-rasmediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci USA, 1994, 91: 10460–10464

    Article  CAS  Google Scholar 

  119. Bi F, Fan D, Hui H, Wang C, Zhang X. Reversion of the malignant phenotype of gastric cancer cells SGC7901 by c-erbB-2-specific hammerhead ribozyme. Cancer Gene Ther, 2001, 8: 835–842

    Article  CAS  Google Scholar 

  120. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, Laterra J. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J, 2002, 16: 108–110

    CAS  Google Scholar 

  121. Parthasarathy R, Cote GJ, Gagel RF. Hammerhead ribozymemediated inactivation of mutant RET in medullary thyroid carcinoma. Cancer Res, 1999, 59: 3911–3914

    CAS  Google Scholar 

  122. Deiner TO. Viroids and Viroid Diseases. New York: Wiley, 1979

    Google Scholar 

  123. Sheldon CC, Symons RH. Is hammerhead self-cleavage involved in the replication of a virusoid in vivo? Virology, 1993, 194(2): 463–474

    Article  CAS  Google Scholar 

  124. Pease AC, Wemmer DE. Characterization of the secondary structure and melting of a self-cleaved RNA hammerhead domain by 1H NMR spectroscopy. Biochemistry, 1990, 29(38): 9039–9046

    Article  CAS  Google Scholar 

  125. Hernández C, Flores R. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci USA, 1992, 89(9): 3711–3715

    Article  Google Scholar 

  126. Hernández C, Daròs JA, Elena SF, Moya A, Flores R. The strands of both polarities of a small circular RNA from carnation self-cleave in vitro through alternative double- and single-hammerhead structures. Nucleic Acids Res, 1992, 20(23): 6323–6329

    Article  Google Scholar 

  127. Stage TK, Hertel KJ, Uhlenbeck OC. Inhibition of the hammerhead ribozyme by neomycin. RNA. 1995, 1(1): 95–101

    CAS  Google Scholar 

  128. Dürckheimer W. Tetracyclines: Chemistry, biochemistry, and structure-activity relations. Angew Chem Int Ed Engl, 1975, 14 (11): 721–734

    Article  Google Scholar 

  129. von Ahsen U, Davies J, Schroeder R. Antibiotic inhibition of group I ribozyme function. Nature. 1991, 353: 368–370

    Article  Google Scholar 

  130. von Ahsen U, Davies J, Schroeder R. Non-competitive inhibition of group I intron RNA self-splicing by aminoglycoside antibiotics. J Mol Biol, 1992, 226(4): 935–941

    Article  Google Scholar 

  131. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430: 45–50

    Article  CAS  Google Scholar 

  132. Karn J. Tackling Tat. J Mol Biol, 1999, 293(2): 235–254

    Article  CAS  Google Scholar 

  133. Zapp ML, Stern S, Green MR. Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell, 1993, 74(6): 969–978.

    Article  CAS  Google Scholar 

  134. Faber C, Sticht H, Schweimer K, Rosch P. Structural rearrangements of HIV-1 Tat-responsive RNAupon binding of neomycin B. J Biol Chem, 2000, 275: 20660–20666

    Article  CAS  Google Scholar 

  135. Davidson A, Leeper TC, Athanassiou Z, Patora-Komisarska K, Karn J, Robinson JA, Varani G. Stimultaneous recognition of HIV-1 TAR RNA bulge and loopsequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci USA, 2009, 106: 11931–11936

    Article  CAS  Google Scholar 

  136. Ogle JM, Carter AP, Ramakrishnan V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci, 2003, 28: 259–266

    Article  CAS  Google Scholar 

  137. Auerbach T, Bashan A, Yonath A. Ribosomal antibiotics:structural basis for resistance, synergism and selectivity. Trends Biotechnol, 2004, 22: 570–576

    Article  CAS  Google Scholar 

  138. Knowles DJC, Foloppe N, Matassova NB, Murchie AIH. The bacterial ribosome, a promising focus for structure-based drug design. Curr Opin Pharmacol, 2002, 2: 501–506

    Article  CAS  Google Scholar 

  139. Vicens Q, Westhof E. RNA as a drug target: the case of aminoglycosides. ChemBioChem, 2003, 4:1018–1023

    Article  CAS  Google Scholar 

  140. Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V. The crystal structure of the ribosome bound to EF-Tu andaminoacyl-tRNA. Science, 2009, 326: 688–694

    Article  CAS  Google Scholar 

  141. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 1987, 327: 389–394

    Article  CAS  Google Scholar 

  142. Purohit P, Stern S. Interactions of a small RNA with antibiotics and RNA ligands of the 30S subunit. Nature, 1994, 370: 659–662

    Article  CAS  Google Scholar 

  143. Miyaguchi H, Narita H, Sakamoto K, Yokoyama S. An antibiotic-binding motif of an RNA fragment derived from the A-site related region of Escherichia coli 16S RNA. Nucleic Acids Res, 1996, 24: 3700–3706

    Article  CAS  Google Scholar 

  144. Recht MI, Fourmy D, Blanchard SC, Dahlquist KD, Puglisi JD. RNA sequence determinants for aminogly-glycosides. J Mol Biol, 1996, 262: 421–436

    Article  CAS  Google Scholar 

  145. Blanchard SC, Fourmy D, Eason RG, Puglisi JD. rRNA chemical groups required for aminoglycoside binding. Biochemistry, 1998, 37: 7716–7724

    Article  CAS  Google Scholar 

  146. Vicens Q, Westhof E. Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol, 2003, 326: 1175–1188

    Article  CAS  Google Scholar 

  147. Russell RJ, Murray JB, Lentzen G, Haddad J, Mobashery S. The complex of a designer antibiotic with a model aminoacyl site of the 30S ribosomal subunit revealed by X-ray crystallography. J Am Chem Soc, 2003, 125: 3410–3411

    Article  CAS  Google Scholar 

  148. Francois B, Szychowski J, Adhikari SS, Pachamuthu K, Swayze EE, Griffey RH, Migawa MT, Westhof E, Hanessian S. Anti-bacterial aminoglycosides with a modified mode of binding to the ribosomal-RNA decoding site. Angew Chem Int Ed Engl, 2004, 43: 6735–6738

    Article  CAS  Google Scholar 

  149. Vourloumis D, Winters GC, Simonsen KB, Takahashi M, Ayida BK, Shandrick S, Zhao Q, Han Q, Hermann T. Aminoglycoside-hybrid ligands targeting the ribosomal decoding site. ChemBioChem, 2005, 6: 58–65

    Article  CAS  Google Scholar 

  150. Rodnina MV, Wintermeyer W. Peptide bond formation on the ribosome: Structure and mechanism. Curr Opin Struct Biol, 2003, 13: 334–340

    Article  CAS  Google Scholar 

  151. Barbachyn MR, Ford CW. Oxazolidinone structure-activity relationships leading to linezolid. Angew ChemInt Ed Engl, 2003, 42: 2010–2023.

    Article  CAS  Google Scholar 

  152. Zhou CC, Swaney SM, Shinabarger DL, Stockman BJ. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother, 2002, 46: 625–629

    Article  CAS  Google Scholar 

  153. Harms JM, Bartels H, Schlunzen F, Yonath A. Antibiotics acting on the translational machinery. J Cell Sci, 2003, 116: 1391–1393

    Article  CAS  Google Scholar 

  154. Hansen JL, Moore PB, Steitz TA. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. J Mol Biol, 2003, 330: 1061–1075

    Article  CAS  Google Scholar 

  155. Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin, BMC Biol, 2004, 2: 4–4

    Article  Google Scholar 

  156. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell, 2002, 10: 117–128

    Article  CAS  Google Scholar 

  157. Schluenzen F, Harms JM, Franceschi F, Hansen HA, Bartels H, Zarivach R, Yonath A. Structural basis for the antibiotic activity of ketolides and azalides. Structure, 2003, 11: 329–338

    Article  Google Scholar 

  158. Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HA, Fucini P, Yonath A. Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol, 2003, 185: 4276–4279

    Article  CAS  Google Scholar 

  159. Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol, 2003, 10: 366–370

    Article  CAS  Google Scholar 

  160. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunitt. Mol Cell, 2002, 10: 117–128

    Article  CAS  Google Scholar 

  161. Liu LF. DNA topoisomerase poisons as antitumor drugs. Ann Rev Biochem, 1989: 58: 351–375

    Article  CAS  Google Scholar 

  162. Corbett KD, Berger JM. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct, 2004, 33: 95–118

    Article  CAS  Google Scholar 

  163. Nitiss, JL. DNA topoisomerases in cancer chemotherapy: Using enzymes to generate selective DNA damage. Curr Opin Investig Drugs, 2002, 3: 1512–1516

    CAS  Google Scholar 

  164. Drlica K, Malik M, Kerns RJ, Zhao X. Quinolonemediated bacterial death. Antimicrob Agents Chemother, 2008, 52: 385–392

    Article  CAS  Google Scholar 

  165. Forterre P, Gribaldo S, Gadelle D, Serre M C. Origin and evolution of DNA topoisomerases. Biochimie, 2007, 427-446

  166. Lopez CR, Yang S, Deibler RW, Ray SA, Pennington JM, Digate RJ, Hastings PJ, Rosenberg SM, Zechiedrich EL. A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol, 2005, 58: 80–101

    Article  CAS  Google Scholar 

  167. Tabary X, Moreau N, Dureuil C, Le Goffic F. Effect of DNA gyrase inhibitors pefloxacin, five other quinolones, novobiocin, and clorobiocin on Escherichia coli topoisomerase I. Antimicrob Agents Chemother, 1987, 31: 1925–1928

    CAS  Google Scholar 

  168. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA, 2002, 99(24): 15387–15392

    Article  CAS  Google Scholar 

  169. Chrencik JE, Burgin AB, Pommier Y, Stewart L, Redinbo MR. Structural impact of the leukemia drug 1-β-d-Arabinofuranosyt-osine (Ara-C) on the covalent human topoisomerase I-DNA complex. J Biol Chem, 2003, 278(14): 12461–12466

    Article  CAS  Google Scholar 

  170. Bergerat A, Gadelle D, Forterre P. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus sh tures. J Biol Chem, 1994, 269: 27663–27669

    CAS  Google Scholar 

  171. Bergerat A, De Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 1999, 386: 414–417

    Article  Google Scholar 

  172. Coates WJ. et al. Preparation of piperidinylalkylquinolines as antibacterials. European Patent, 1999, 051413

  173. Wiener JJ, Gomez L, Venkatesan H, Santillán A Jr, Allison BD, Schwarz KL, Shinde S, Tang L, Hack MD, Morrow BJ, Motley ST, Goldschmidt RM, Shaw KJ, Jones TK, Grice CA. Tetrahydroindazole inhibitors of bacterial type II topoisomerases. Part 2: SAR development and potency against multidrugresistant strains. Bioorg Med Chem Lett, 2007, 7: 2718–2722

    Article  CAS  Google Scholar 

  174. Black MT, Stachyra T, Platel D, Girard AM, Claudon M, Bruneau JM, Miossec C. Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother, 2008, 52: 3339–3349

    Article  CAS  Google Scholar 

  175. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano L, Hann MM, Hennessy A, Hibbs M, Huang JZ, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, XShillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN. Type IIA topoisomerase inhibition by a new class of antibacterial agents, Nature, 2010, 466: 935–939

    Article  Google Scholar 

  176. Sheng J, Huang Z. Selenium derivatization of nucleic acids for X-ray crystal structure and function studies. Chem Biodiver, 2010, 7: 753–785

    Article  CAS  Google Scholar 

  177. Sheng J, Salon J, Gan J-H, Huang Z. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Sci China Chem, 2010, 53: 78–85

    Article  CAS  Google Scholar 

  178. Hassan AEA, Sheng J, Zhang W, Huang Z. High fidelity of base paring by 2-selenothymidine in DNA. J Am Chem Soc, 2010, 132: 2120–2121

    Article  CAS  Google Scholar 

  179. Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z. Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res, 2008, 36: 7009–7018

    Article  CAS  Google Scholar 

  180. Caton-Williams J, Huang Z. Synthesis and DNA polymerase incorporation of colored 4-selenothymidine triphosphate with a single atom substitution. Angew Chem Int Ed Engl, 2008, 47: 1723–1725

    Article  CAS  Google Scholar 

  181. Salon J, Sheng J, Gan J-H, Huang Z. Synthesis and crystal structure of 2′-Se-modified guanosine containing DNA. J Org Chem, 2010, 75: 637–641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, J., Sheng, J. & Huang, Z. Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery. Sci. China Chem. 54, 3–23 (2011). https://doi.org/10.1007/s11426-010-4174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4174-x

Kewyords

Navigation