Skip to main content
Log in

Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacolla A, Gellibolian R, Shimizu M, Amirhaeri S, Kang S, Ohshima K, Larson J E, Harvey S C, Stollar B D and Wells R D 1997 Flexible DNA -genetically unstable CTG•CAG and CGG•CCG from human hereditary neuromuscular disease genes;J. Biol. Chem. 272 16783–16792

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya D, Kundu S, Thakur A R and Majumdar R 1999 Sequence directed flexibility of DNA and the role of cross-strand hydrogen bonds;J. Biomol. Struct. Dyn. 17 289–300

    PubMed  CAS  Google Scholar 

  • Bidichandani S I, Ashizawa T and Patel P I 1998 The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure;Am. J. Hum. Genet. 62 111–121

    Article  PubMed  CAS  Google Scholar 

  • Brahmachari S K, Meera G, Sarkar P S, Balagurumoorthy P, Tripathi J, Raghavan S, Shaligram U and Pataskar S 1995 Simple repetitive sequences in the genome: Structure and functional significance;Electrophoresis 16 1705–1714

    Article  PubMed  CAS  Google Scholar 

  • Brook J D, McCurrach M E, Harley H G, Buckler A J, Church D, Aburatani H, Hunter K, Stanton V P, Thirion J P, Hudson T, Sohn R, Zemelman B, Snell R G, Rundle S A, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, Johnson K, Harper P S, Shaw D J and Housman D E 1992 Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member;Cell 68 799–808

    Article  PubMed  CAS  Google Scholar 

  • Campuzano V, Montermini L, Molto M D, Pianese L, Cossee M, Cavalcanti F, Montos E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani S I, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel P I, Di Donato S, Mandel J L, Cocozza S, Koenig M and Pandolfo M 1996 Friedreich’s Ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion;Science 271 1423–1427

    Article  PubMed  CAS  Google Scholar 

  • Chastain P D, Eichler E E, Kang S, Nelson D L, Levene S D and Sinden R R 1995 Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes;Biochemistry 34 16125–16131

    Article  PubMed  CAS  Google Scholar 

  • Chastain P D and Sinden R R 1998 CTG repeats associated with human genetic disease are inherently flexible;J. Mol. Biol. 275 405–411

    Article  PubMed  CAS  Google Scholar 

  • Coggins L W and O’Prey M 1989 DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences;Nucleic Acids Res. 17 7417–7426

    Article  PubMed  CAS  Google Scholar 

  • Coggins L W, O’Prey M and Akhter S 1992 Intrahelical pseudoknots and interhelical associations medicated by mispaired human minisatelite DNA sequences in vitro;J. Mol. Biol. 121 279–285

    CAS  Google Scholar 

  • Darlo J M and Leach D R F 1995 The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability inEscherichia coli suggest hairpin folding preferences in vivo;Genetics 141 825–832

    Google Scholar 

  • Darlow J M and Leach D R F 1998a Secondary structures in d(CGG) and d(CCG) repeat tracts;J. Mol. Biol. 275 3–16

    Article  PubMed  CAS  Google Scholar 

  • Darlow J M and Leach D F 1998b Evidence for two preferred hairpin folding patterns in d(CGG)•d(CCG) repeat tractsin vivo;J. Mol. Biol. 275 17–23

    Article  PubMed  CAS  Google Scholar 

  • Fortune M T, Vassilopoulos C, Coolbaugh M I, Siciliano M J and Monckton D G 2000 Dramatic, expansion-biased, agedependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability;Hum. Mol. Genet. 9 439–445

    Article  PubMed  CAS  Google Scholar 

  • Fry M and Loeb L A 1994 The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure;Proc. Natl. Acad. Sci. USA 91 4950–4954

    Article  PubMed  CAS  Google Scholar 

  • Fu Y-H, Kuhl DPA, Pizzuti A, Pieretti M, Sutcliffe J S, Richards S, Verkerk A J M H, Holden J J A, Fenwick J R G, Warren S T, Oostra B A, Nelson D L and Caskey C T 1991 Variation of the CGG repeat at the Fragile X site results in genetic instability: resolution of the Sherman paradox;Cell 67 1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Fu Y H, Pizzuti A, Fenwick Jr R G, King J, Rajnarayan S, Dunne P W, Dubel J, Nasser G A, Ashizawa T, DeJong P, Wieringa B, Korneluk R, Perryman M B, Epstein H F and Caskey C T 1992 An unstable triplet repeat in a gene related to myotonic muscular dystrophy;Science 255 1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Gacy A M and McMurray C T 1998 Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA;Biochemistry 37 9426–9434

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Huang X, Smith G K, Zheng M and Liu H 1995 A new antiparallel duplex motif of DNA CCG repeats that is stabi-lized by extrahelical bases symetrically localized in the minor groove;J. Am. Chem. Soc. 117 8883–8884

    Article  CAS  Google Scholar 

  • Godde J S, Kass S U, Hirst M C and Wolffe A P 1996 Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter;J. Biol. Chem. 271 24325–24328

    Article  PubMed  CAS  Google Scholar 

  • Godde J S and Wolffe A P 1996 Nucleosome assembly on CTG triplet repeats;J. Biol. Chem. 271 15222–15229

    Article  PubMed  CAS  Google Scholar 

  • Hanvey J C, Shimizu M and Wells R D 1988 Intramolecular DNA triplexes in supercoiled plasmids;Proc. Natl. Acad. Sci. USA 85 6292–6296

    Article  PubMed  CAS  Google Scholar 

  • Hartenstine M J, Goodman M F and Petruska J 2000 Base stacking and even/odd behaviour of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase;J. Biol. Chem. 275 18382–18390

    Article  PubMed  CAS  Google Scholar 

  • Heintz N and Zoghbi H Y 2000 Insights from mouse models into the molecular basis of neurodegeneration;Annu. Rev. Physiol. 62 779–802

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Bertsch L L, Jackson J F and Khorana H G 1964 Enzymatic synthesis of deoxyribonucleic acid, XVI. Oligo-nucleotides as templates and the mechanism of their replication;Proc. Natl. Acad. Sci. USA 51 315–323

    Article  PubMed  CAS  Google Scholar 

  • Kremer E J, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren S T, Schlessinger D, Sutherland G R and Richards R I 1991 Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n;Science 252 1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Lilley D M J 1995 Kinking of DNA and RNA by base bulges;Proc. Natl. Acad. Sci. USA 92 7140–7142

    Article  PubMed  CAS  Google Scholar 

  • Lilley D M J and Clegg RM 1993 The structure of branched DNA species;Q. Rev. Biophys. 26 131–175

    Article  PubMed  CAS  Google Scholar 

  • Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L and Seeman N C 1986 Three-arm nucleic acid junctions are flexible;Nucleic Acids Res. 14 9745–9753

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K, Leblond S, Earle-McDonald J, de Jons P J, Wieringa B and Korneluk R G 1992 Myotonic dystrophy mutation: An unstable CTG repeat in the 3′ untranslated region of the gene;Science 255 1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Mitas M 1997 Trinucleotide repeats associated with human disease;Nucleic Acids Res. 25 2245–2253

    Article  PubMed  CAS  Google Scholar 

  • Nadel Y, Weisman-Shomer P and Fry M 1995 The fragile X syndrome single strand d(CGG)n nucleotide repeats readily fold back to form unimolecular hairpin structures;J. Biol. Chem. 270 28970–28977

    Article  PubMed  CAS  Google Scholar 

  • Ohshima K, Kang S, Larson J E and Wells R D 1996 Cloning, characterization, and properties of seven triplet repeat DNA sequences;J. Biol. Chem. 271 16773–16783

    Article  PubMed  CAS  Google Scholar 

  • Ohshima K, Montermini L, Wells R D and Pandolfo M 1998 Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo;J. Biol. Chem. 273 14588–14595

    Article  PubMed  CAS  Google Scholar 

  • Oussatcheva E A, Shlyakhtenko L S, Glass R, Sinden R R, Lyubchenko Y L and Potaman V N 1999 Structure of Branched DNA Molecules: Gel Retardation and Atomic Force Microscopy Studies;J. Mol. Biol. 292 75–86

    Article  PubMed  CAS  Google Scholar 

  • Pearson C E, Eichler E E, Lorenzetti D, Kramer S F, Zoghbi H Y, Nelson D L and Sinden R R 1998a Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation;Biochemistry 37 2701–2708

    Article  PubMed  CAS  Google Scholar 

  • Pearson C E, Wang Y H, Griffith J D and Sinden R R 1998b Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n•(CAG)n repeats from the myotonic dystrophy locus;Nucleic Acids Res. 26 816–823

    Article  PubMed  CAS  Google Scholar 

  • Pearson C E, Ewel A, Acharya S, Fishel R A and Sinden R R 1997 Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases;Hum. Mol. Genet. 6 1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Pearson C E and Sinden R R 1996 Alternative DNA structures within the trinucleotide repeats of the myotonic dystrophy and fragile X locus;Biochemistry 35 5041–5053

    Article  PubMed  CAS  Google Scholar 

  • Pearson C E and Sinden R R 1998a Slipped strand DNA, dynamic mutations, and human disease; inGenetic instabilities and hereditary neurological disorders (eds) R D Wells and S T Warren (San Diego: Academic Press) pp 585–621

    Google Scholar 

  • Pearson C E and Sinden R R 1998b Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA;Curr. Opin. Struct. Biol. 8 321–330

    Article  PubMed  CAS  Google Scholar 

  • Petruska J, Arnheim N and Goodman M F 1996 Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases;Nucleic Acids Res. 24 1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Petruska J, Hartenstine M J and Goodman M F 1998 Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease;J. Biol. Chem. 273 5204–5210

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto N, Chastain P D, Parniewski P, Ohshima K, Pandolfo M, Griffith J D and Wells R D 1999 Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia;Mol. Cell 3 465–475

    Article  PubMed  CAS  Google Scholar 

  • Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma M V, Chakravarthy A, Maheshwari M C, Jain S and Brahmachari S K 2000 Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation;Hum. Genet. 106 179–187

    Article  PubMed  CAS  Google Scholar 

  • Samadashwily G M, Raca G and Mirkin S M 1997 Trinucleotide repeats affect DNA replicationin vivo;Nature Genet. 17 298–304

    Article  PubMed  CAS  Google Scholar 

  • Schlotterer C and Tautz D 1992 Slippage synthesis of simple sequence DNA;Nucleic Acids Res. 20 211–215

    Article  PubMed  CAS  Google Scholar 

  • Seeman N C and Kallenbach N R 1994 DNA branched junctions;Annu. Rev. Biophys. Biomol. Struct. 23 53–86

    Article  PubMed  CAS  Google Scholar 

  • Semerad C L and Maher L J III 1994 Exclusion of RNA strands from a purine motif triple helix;Nucleic Acids Res. 22 5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko L S, Potaman V N, Sinden R R, Gall A A and Lyubchenko Y L 2000 Structure and dynamics of three-way DNA junctions: Atomic force microscopy studies;Nucleic Acids Res. 28 3472–3477

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhtenko L S, Rekesh D, Lindsay S M, Kutyavin I, Appella E, Harrington R E and Lyubchenko Y L 1994 Structure of three-way DNA junctions. 1. Non-planar DNA geometry;J. Biomol. Struct. Dyn. 11 1175–1189

    PubMed  CAS  Google Scholar 

  • Sinden R R 1994DNA structure and function (San Diego: Academic Press)

    Google Scholar 

  • Sinden R R 1999 Biological implications of the DNA structures associated with disease-causing triplet repeats;Am. J. Hum. Genet. 64 346–353

    Article  PubMed  CAS  Google Scholar 

  • Sinden R R and Wells R D 1992 DNA structure, mutations, and human genetic disease;Curr. Opin. Biotech. 3 612–622

    Article  PubMed  CAS  Google Scholar 

  • Stuhmeier F, Welch J B, Murchie A I, Lilley D M and Clegg R M 1997 Global structure of three-way DNA junctions with and without additional unpaired bases: a fluorescence resonance energy transfer analysis;Biochemistry 36 13530–13538

    Article  PubMed  CAS  Google Scholar 

  • Suen I S, Rhodes J N, Christy M, McEwen B, Gray D M and Mitas M 1999 Structural properties of Friedreich’s ataxia d(GAA) repeats;Biochim. Biophys. Acta 1444 14–24

    PubMed  CAS  Google Scholar 

  • Ulyanov N B, Bishop K D, Ivanov V I and James T L 1994 Tertiary base pair interactions in slipped loop-DNA: an NMR and model building study;Nucleic Acids Res. 22 4242–4249

    Article  PubMed  CAS  Google Scholar 

  • Ulyanov N B, Ivanov V I, Minyat E E, Khomyakova E B, Petrova M V, Lesiak K and James T L 1998 Immobile Slipped-loop Structures of DNA in Solution; inStructure, motion, interaction and expression of biological macromolecules (eds) R H Sarma and M H Sarma (Schenectady: Adenine Press) vol. 1, pp 75–88

    Google Scholar 

  • Usdin K 1998 NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases;Nucleic Acids Res. 26 4078–4085

    Article  PubMed  CAS  Google Scholar 

  • Usdin K and Woodford K J 1995 CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesisin vitro;Nucleic Acids Res. 23 4202–4209

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-H, Amirhaeri S, Kang S, Wells R D and Griffith J D 1994 Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene;Science 265 669–671

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-H, Gellibolian R, Shimizu M, Wells R D and Griffith J 1996 Long CCG triplet repeat blocks exclude nucleosomes -a possible mechanism for the nature of fragile sites in chromosomes;J. Mol. Biol. 263 511–516

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-H and Griffith J 1996 Methylation of expanded CCG triplet repeat DNA from fragile X syndrome patients enhances nucleosome exclusion;J. Biol. Chem. 271 22937–22940

    Article  PubMed  CAS  Google Scholar 

  • Watson J D and Crick F H C 1953 Molecular structure of nucleic acids -a structure for deoxyribose nucleic acid;Nature (London) 171 737–738

    Article  CAS  Google Scholar 

  • Weisman-Shomer P, Cohen E and Fry M 2000 Interruption of the fragile X syndrome expanded sequence d(CGG)(n) by interspersed d(AGG) trinucleotides diminishes the formation and stability of d(CGG)(n) tetrahelical structures;Nucleic Acids Res. 28 1535–1541

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Sinden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinden, R.R., Potaman, V.N., Oussatcheva, E.A. et al. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA. J Biosci 27, 53–65 (2002). https://doi.org/10.1007/BF02703683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703683

Keywords

Navigation