Skip to main content
Log in

W-entropy formulas on super Ricci flows and Langevin deformation on Wasserstein space over Riemannian manifolds

  • Reviews
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this survey paper, we give an overview of our recent works on the study of the W-entropy for the heat equation associated with the Witten Laplacian on super-Ricci flows and the Langevin deformation on the Wasserstein space over Riemannian manifolds. Inspired by Perelman’s seminal work on the entropy formula for the Ricci flow, we prove the W-entropy formula for the heat equation associated with the Witten Laplacian on n-dimensional complete Riemannian manifolds with the CD(K,m)-condition, and the W-entropy formula for the heat equation associated with the time-dependent Witten Laplacian on n-dimensional compact manifolds equipped with a (K,m)-super Ricci flow, where K ∈ R and m ∈ [n,∞]. Furthermore, we prove an analogue of the W-entropy formula for the geodesic flow on the Wasserstein space over Riemannian manifolds. Our result improves an important result due to Lott and Villani (2009) on the displacement convexity of the Boltzmann-Shannon entropy on Riemannian manifolds with non-negative Ricci curvature. To better understand the similarity between above two W-entropy formulas, we introduce the Langevin deformation of geometric flows on the tangent bundle over the Wasserstein space and prove an extension of the W-entropy formula for the Langevin deformation. We also make a discussion on the W-entropy for the Ricci flow from the point of view of statistical mechanics and probability theory. Finally, to make this survey more helpful for the further development of the study of the W-entropy, we give a list of problems and comments on possible progresses for future study on the topic discussed in this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson G, Guionnet A, Zeitouni O. An Introduction to Random Matrices. Cambridge: Cambridge University Press, 2010

    MATH  Google Scholar 

  2. Bakry D, Emery M. Diffusion hypercontractives. In: Séminaire de probabilités, XIX. Lecture Notes in Mathematics, vol. 1123. Berlin: Springer-Verlag, 1985, 177–206

    Google Scholar 

  3. Bakry D, Ledoux M. A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev Mat Iberoam, 2006, 22: 683–702

    Article  MathSciNet  MATH  Google Scholar 

  4. Baudoin F, Garofalo N. Perelman’s entropy and doubling property on Riemannian manifolds. J Geom Anal, 2011, 21: 1119–1131

    Article  MathSciNet  MATH  Google Scholar 

  5. Benamou J-D, Brenier Y. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer Math, 2000, 84: 375–393

    Article  MathSciNet  MATH  Google Scholar 

  6. Bismut J-M. The hypoelliptic Laplacian on the cotangent bundle. J Amer Math Soc, 2005, 18: 379–476

    Article  MathSciNet  MATH  Google Scholar 

  7. Bismut J-M. Hypoelliptic Laplacian and orbital integrals. Annals of Mathematics Studies, vol. 177. Princeton: Princeton University Press, 2011

  8. Boltzmann L. Weitere Studien ber das Wärmegleichgewicht unter Gasmolekülen. Wiener Berichte, 1872, 66: 275–370

    MATH  Google Scholar 

  9. Boltzmann L. Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Wiener Berichte, 1877, 76: 373–435

    Google Scholar 

  10. Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions. Comm Pure Appl Math, 1991, 44: 375–417

    Article  MathSciNet  MATH  Google Scholar 

  11. Clausius R. Über die Wärmeleitung gasfrmiger Körper. Ann Phys (8), 1865, 125: 353–400

    Article  Google Scholar 

  12. Ecker K. A formula relating entropy monotonicity to Harnack inequalities. Comm Anal Geom, 2007, 15: 1025–1061

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans L. Lecture notes on entropy and partial differential equations. Http://math.berkeley.edu/~evans/entropy.and. PDE.pdf

  14. Gawedzki K. Lectures on Conformal Field Theory. Quantum Fields and Strings: A Course for Mathematicians, vol. 2. Providence: Amer Math Soc, 1999

    Google Scholar 

  15. Hamilton R S. Three manifolds with positive Ricci curvature. J Differential Geom, 1982, 17: 255–306

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton R S. The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, vol. 2. Boston: International Press, 1995, 7–136

    Google Scholar 

  17. Kotschwar B, Ni L. Gradient estimate for p-harmonic functions, 1=H flow and an entropy formula. Ann Sci Éc Norm Supér (4), 2009, 42: 1–36

    Article  MathSciNet  MATH  Google Scholar 

  18. Li J, Xu X. Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation. Adv Math, 2011, 226: 4456–4491

    Article  MathSciNet  MATH  Google Scholar 

  19. Li P, Yau S-T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156: 153–201

    Article  MathSciNet  Google Scholar 

  20. Li S. W-entropy formulas on super Ricci flows and matrices Dirichlet processes. PhD Thesis. Shanghai: Fudan University; Toulouse: Université Paul Sabatier, 2015

    Google Scholar 

  21. Li X-D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J Math Pures Appl (9), 2005, 84: 1295–1361

    Article  MathSciNet  MATH  Google Scholar 

  22. Li X-D. On Perelman’s W-entropy functional on Riemannian manifolds with weighted volume measure. Included in These d’Habilitation à Diriger des Rechercher. Toulouse: Université Paul Sabatier, 2007

    Google Scholar 

  23. Li X-D. Perelman’s W-entropy for the Fokker-Planck equation over complete Riemannian manifolds. Bull Sci Math, 2011, 135: 871–882

    Article  MathSciNet  MATH  Google Scholar 

  24. Li X-D. Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature. Math Ann, 2012, 353: 403–437

    Article  MathSciNet  MATH  Google Scholar 

  25. Li X-D. From the Boltzmann H-theorem to Perelman’s W-entropy formula for the Ricci flow. In: Emerging Topics on Differential Equations and Their Applications. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 10. Hackensack: World Scientific, 2013, 68–84

    Chapter  Google Scholar 

  26. Li X-D. Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds. Stochastic Process Appl, 2016, 126: 1264–1283

    Article  MathSciNet  MATH  Google Scholar 

  27. Li S, Li X-D. W-entropy formula for the Witten Laplacian on manifolds with time-dependent metrics and potentials. Pacific J Math, 2015, 278: 173–199

    Article  MathSciNet  MATH  Google Scholar 

  28. Li S, Li X-D. Harnack inequalities and W-entropy formula for Witten Laplacian on Riemannian manifolds with K-super Perelman Ricci flow. ArXiv:1412.7034, 2014

    Google Scholar 

  29. Li S, Li X-D. W-entropy formulas and Langevin deformation of flows on Wasserstein space over Riemannian manifolds. ArXiv:1604.02596, 2016

    Google Scholar 

  30. Li S, Li X-D. On Harnack inequalities for Witten Laplacian on Riemannian manifolds with super Ricci flows. Asian J Math, 2018, in press

    Google Scholar 

  31. Li S, Li X-D. W-entropy, super Perelman Ricci flows and (K,m)-Ricci solitons. ArXiv:1706.07040, 2017

    Google Scholar 

  32. Li S, Li X-D. Hamilton differential Harnack inequality and W-entropy for Witten Laplacian on Riemannian manifolds. J Funct Anal, 2018, 274: 3263–3290

    Article  MathSciNet  MATH  Google Scholar 

  33. Li S, Li X-D, Xie Y-X. Generalized Dyson Brownian motion, McKean-Vlasov equation and eigenvalues of random matrices. ArXiv:1303.1240, 2013

    Google Scholar 

  34. Li S, Li X-D, Xie Y-X. On the law of large numbers for empirical measure process of generalized Dyson Brownian motion. ArXiv:1407.7234, 2014

    Google Scholar 

  35. Lott J. Some geometric calculations on Wasserstein space. Comm Math Phys, 2008, 277: 423–437

    Article  MathSciNet  MATH  Google Scholar 

  36. Lott J. Optimal transport and Perelman’s reduced volume. Calc Var Partial Differential Equations, 2009, 36: 49–84

    Article  MathSciNet  MATH  Google Scholar 

  37. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169: 903–991

    Article  MathSciNet  MATH  Google Scholar 

  38. Lu P, Ni L, Vazquez J-J, et al. Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J Math Pures Appl (9), 2009, 91: 1–19

    Article  MathSciNet  MATH  Google Scholar 

  39. McCann R. Polar factorization of maps on Riemannian manifolds. Geom Funct Anal, 2001, 11: 589–608

    Article  MathSciNet  MATH  Google Scholar 

  40. McCann R, Topping P. Ricci flow, entropy and optimal transpotation. Amer J Math, 2010, 132: 711–730

    Article  MathSciNet  MATH  Google Scholar 

  41. Nash J. Continuity of solutions of parabolic and elliptic equations. Amer J Math, 1958, 80: 931–954

    Article  MathSciNet  MATH  Google Scholar 

  42. Ni L. The entropy formula for linear equation. J Geom Anal, 2004, 14: 87–100

    Article  MathSciNet  MATH  Google Scholar 

  43. Ni L. Addenda toThe entropy formula for linear equation". J Geom Anal, 2004, 14: 329–334

    Google Scholar 

  44. Otto F. The geometry of dissipative evolution equations: The porous medium equation. Comm Partial Differential Equations, 2001, 26: 101–174

    Article  MathSciNet  MATH  Google Scholar 

  45. Otto F, Villani C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J Funct Anal, 2000, 173: 361–400

    Article  MathSciNet  MATH  Google Scholar 

  46. Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv:math/0211159, 2002

    MATH  Google Scholar 

  47. Shannon C. A mathematical theory of communication. Bell Syst Tech J, 1948, 27: 379–423

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm K-T. Convex functionals of probability measures and nonlinear diffusions on manifolds. J Math Pures Appl (9), 2005, 84: 149–168

    Article  MathSciNet  MATH  Google Scholar 

  49. Sturm K-T. On the geometry of metric measure spaces, I. Acta Math, 2006, 196: 65–131

    Article  MathSciNet  MATH  Google Scholar 

  50. Sturm K-T. On the geometry of metric measure spaces, II. Acta Math, 2006, 196: 133–177

    Article  MathSciNet  MATH  Google Scholar 

  51. Sturm K-T, von Renesse M-K. Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm Pure Appl Math, 2005, 58: 923–940

    Article  MathSciNet  MATH  Google Scholar 

  52. Topping P. Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series, vol. 325. Cambridge: Cambridge University Presse, 2006

    Book  MATH  Google Scholar 

  53. Topping P. L-optimal transportation for Ricci flow. J Reine Angew Math, 2009, 636: 93–122

    MathSciNet  MATH  Google Scholar 

  54. Villani C. Topics in Optimal Transportation. Providence: Amer Math Soc, 2003

    Book  MATH  Google Scholar 

  55. Villani C. Optimal Transport: Old and New. Berlin: Springer, 2008

    MATH  Google Scholar 

  56. Villani C. Entropy production and convergence to equilibrium. In: Entropy Methods for the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1916. Berlin: Springer, 2008, 1–70

    Article  MathSciNet  MATH  Google Scholar 

  57. Villani C. H-theorem and beyond: Boltzmann’s entropy in today’s mathematics. In: Boltzmann’s Legacy. ESI Lectures in Mathematics and Physics. Zürich: Eur Math Soc, 2008, 129–143

    Chapter  Google Scholar 

  58. Villani C. (Ir)reversibility and entropy. Progress in Mathematical Physics, vol. 63. Basel: Birkhäuser/Springer, 2013, 19–79

    Google Scholar 

  59. Wang Y Z. W-entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Comm Pure Appl Math, 2018, in press

    Google Scholar 

Download references

Acknowledgements

The first author was supported by a Postdoctoral Fellowship at Beijing Normal University and China Postdoctoral Science Foundation (Grant No. 2017M610797). The second author was supported by National Natural Science Foundation of China (Grant Nos. 11771430 and 11371351) and Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182). The authors thank Professors Shigeki Aida, Dominique Bakry, Jean-Michel Bismut, Jean-Dominique Deuschel, David Elworthy, Kazuhiro Kuwae, Michel Ledoux, Ngaiming Mok, Karl-Theodor Sturm, Anton Thalmaier, Fengyu Wang and Dr. Yuzhao Wang for their interests, comments and helpful discussions during various stages of this work. Moreover, the authors thank an anonymous referee for his very careful reading and very nice comments which led them to improve the paper. The authors thank the Editors for their interests on this work and for their nice comment which suggests the authors to include some further problems and comments for future work and possible progress on the topic discussed in this paper. In 2016, the second author of this paper was invited to give a Special Invited Talk in the 2016 Autumn Meeting of the Mathematical Society of Japan. This survey is an improved version of the abstract for this meeting. The second author thanks the committee members of the Mathematical Society of Japan, in particular, Professors Shigeki Aida and Kazuhiro Kuwae, for their interests and invitation. Finally, the authors thank the Mathematical Society of Japan to allow them to submit this survey to SCIENCE CHINA Mathematics for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Li.

Additional information

Dedicated to Professor Zhiming Ma on His Seventieth Anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, XD. W-entropy formulas on super Ricci flows and Langevin deformation on Wasserstein space over Riemannian manifolds. Sci. China Math. 61, 1385–1406 (2018). https://doi.org/10.1007/s11425-017-9227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9227-7

Keywords

MSC(2010)

Navigation