Skip to main content

Advertisement

Log in

Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Sugarcane-legume intercrops have gained attention because of their ability to improve crop productivity in an ecofriendly manner. We investigated the roles of rhizospheric and endospheric diazotrophs in soil nutrient transformation.

Materials and methods

We conducted two field experiments with three treatments: sugarcane monoculture, sugarcane + peanut intercrop, and sugarcane + soybean intercrop. Soil and plant samples were collected and the nutrient content, enzymatic activity, and diazotroph population were assessed. The nitrogenase (nifH) gene and 16S rRNA gene were used for molecular characterization. Correlation analysis was performed to discover the relations among the soil variables, plant variables, and microbial communities.

Results and discussion

The multiple variance analysis results indicated that the intercropping systems had a significant (p < 0.05) effect on soil total P, available K, and soil enzyme dehydrogenase. Higher diazotrophic populations in the rhizosphere and plant endosphere were recovered by sugarcane intercropping. The soybean intercrop had the maximum unique operational taxonomic units (OTUs). A total of 64 nifH gene-positive bacteria were identified by 16S rRNA gene sequencing. The BLAST search results classified all diazotrophs into five taxonomic groups: γ-Proteobacteria (28%), Actinobacteria (28%), Firmicutes (25%), β-Proteobacteria (11%), and α-Proteobacteria (8%). All identified bacteria had multiple plant growth-promoting abilities, and only 58% of the bacteria utilized aminocyclopropane-1-carboxylic acid (ACC) as their sole carbon source. Furthermore, the higher yield and γ-Proteobacteria positively correlated with soil organic matter, and urease activity revealed that intercropping improved soil fertility.

Conclusions

Our study concluded that the intercropping system enriched the beneficial diazotrophs in the plant rhizosphere and endosphere and that these microbes could enhance plant growth and serve as effective bioinoculants to sustain sugarcane production. Moreover, higher soil nutrients (NKP) and biological activity showed the significance of our intercropping practice of a short-duration leguminous crop and a long-duration grass crop, and this practice would be a good solution to reduce the overuse of chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albino U, Saridakis DP, Ferreira MC, Hungria M, Vinuesa P, Andrade G (2006) High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant Soil 287:199–207

    Article  CAS  Google Scholar 

  • Ali SZ, Sandhya V, Venkateswar Rao L (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Ashworth AJ, DeBruyn JM, Allen FL et al (2017) Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol Biochem 114:210–219

    Article  CAS  Google Scholar 

  • Bailly X, Olivieri I, De mita S et al (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15:2719–2734

    Article  CAS  Google Scholar 

  • Balkcom KS, Wood CW, Adams JF, Meso B (2007) Suitability of peanut residue as a nitrogen source for a rye cover crop. Sci Agric 64:181–186

    Article  CAS  Google Scholar 

  • Bao SD (2002) Soil agricultural chemical analysis, 3rd edition. China Agricultural Press, Beijing

    Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. CRC Crit Rev Plant Sci 28:139–163

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bremmer J, Mulvaney C (1982) “Total nitrogen,” In methods of soil analysis—part 2. In: Bluck CA (ed) Chemical and microbiological properties. American Society of Agronomy, Wisconsin, pp 595–624

    Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Lewis, Boca Raton

    Google Scholar 

  • Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345:155–169

    Article  CAS  Google Scholar 

  • Chen P, Du Q, Liu X et al (2017) Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS One 12:e0184503. https://doi.org/10.1371/journal.pone.0184503

    Article  CAS  Google Scholar 

  • Dai C-C, Chen Y, Wang X-X, Li P-D (2013) Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China. Agrofor Syst 87:417–426

    Article  Google Scholar 

  • Döbereiner J, Day J (1976) Associative symbiosis in tropical grasses, characterization of microorganisms and dinitrogen fixing sites, In: INTERN. Pullman: Washington State University

  • Dworkin M, Foster JW (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603

    CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43:2063–2113

    Article  CAS  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  • Gordon SA, Paleg LG (1957) Observations on the quantitative determination of indoleacetic acid. Physiol Plant 10:39–47

    Article  CAS  Google Scholar 

  • Guan SY, Zhang D, Zhang Z (1986) Soil enzyme and its research methods. China Agriculture Press, Beijing

    Google Scholar 

  • Habig J, Swanepoel C (2015) Effects of conservation agriculture and fertilization on soil microbial diversity and activity. Environments 2:358–384

    Article  Google Scholar 

  • Hammer DAT, Ryan PD, Hammer Ø, Harper DAT (2001) Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:178

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  CAS  Google Scholar 

  • Hardy RW, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Jiang Y, Zhou JG, Zou YP (2014) Isolation and primary identification of a new nitrogen-fixation Arthrobacter strain. J Cent China Norm Univ Natural Sci 38:210–214

    Google Scholar 

  • Kageyama A, Matsumoto A, Omura S, Takahashi Y (2008) Humibacillus xanthopallidus gen. nov., sp. nov. Int J Syst Evol Microbiol 58:1547–1551

    Article  CAS  Google Scholar 

  • Kaur N, Bhullar MS, Gill G (2015) Weed management options for sugarcane-vegetable intercropping systems in north-western India. Crop Prot 74:18–23

    Article  Google Scholar 

  • Kaushal M, Kaushal R (2015) Acetylene reductase activity and molecular characterization of plant growth promoting rhizobacteria to know efficacy in integrated nutrient management system. Indian J Biotechnol 14:221–227

    CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary geaetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Kushwah SS, Reddy DD, Somasundaram J, Srivastava S, Khamparia RS (2016) Crop residue retention and nutrient management practices on stratification of phosphorus and soil organic carbon in the soybean–wheat system in vertisols of central India. Commun Soil Sci Plant Anal 47:2387–2395

    Article  CAS  Google Scholar 

  • Lacava PT, Araujo WL, Marcon J, Maccheroni W, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  Google Scholar 

  • Li Y-R, Yang L-T (2015) Sugarcane agriculture and sugar industry in China. Sugar Tech 17:1–8

    Article  Google Scholar 

  • Li Z, Luo Y, Teng Y (2008) Research methods for soil and environmental microbiology. Science Press, Beijing

    Google Scholar 

  • Li X, Mu Y, Cheng Y, Liu X, Nian H (2013) Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol Plant 35:1113–1119

    Article  CAS  Google Scholar 

  • Li Y-R, Zhou X-Z, Yang L-T (2015) Biological nitrogen fixation in sugarcane and nitrogen transfer from sugarcane to cassava in an intercropping system. 6:214–218

  • Li Q, Chen J, Wu L, Luo X, Li N, Arafat Y, Lin S, Lin W (2018) Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020622

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012a) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93:1185–1195

    Article  CAS  Google Scholar 

  • Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012b) Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27:391–398

    Article  Google Scholar 

  • Loiret FG, Ortega E, Kleiner D, Ortega-Rodes P, Rodes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  CAS  Google Scholar 

  • Makinde EA, Oluwatoyinbo FI, Ayoola OT (2006) Intercropping and crop residue incorporation: effects on soil nutrient status. J Plant Nutr 29:235–244

    Article  CAS  Google Scholar 

  • Malik KA, Jung C, Claus D, Schlegel HG (1981) Nitrogen fixation by the hydrogen-oxidizing bacterium Alcaligenes latus. Arch Microbiol 129:254–256

    Article  CAS  Google Scholar 

  • Mehnaz S, Deeba B, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7567

    Article  CAS  Google Scholar 

  • Neugschwandtner RW, Kaul H-P (2015) Nitrogen uptake, use and utilization efficiency by oat–pea intercrops. Field Crop Res 179:113–119

    Article  Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2:127–134

    Article  Google Scholar 

  • Patil HJ, Solanki MK (2016) Microbial inoculant: modern era of fertilizers and pesticides. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity: vol. 1: research perspectives. Springer, New Delhi

    Google Scholar 

  • Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Ponnuswamy K, Santhi P, Shanmugasundaram V (1994) Economics of sugarcane based cropping system under various moisture regimes. Bharatiya Sugar 20:57–58

    Google Scholar 

  • Prakash O, Green SJ, Jasrotia P, Overholt WA, Canion A, Watson DB, Brooks SC, Kostka JE (2012) Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. Int J Syst Evol Microbiol 62:2457–2462

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Russell DW. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York

  • Sarr PS, Yamakawa T, Asatsuma S et al (2010) Investigation of endophytic and symbiotic features of Ralstonia sp. TSC1 isolated from cowpea nodules Papa. African J Microbiol Res 4:1959–1963

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Shukla S, Pandey M (1999) Feasibility of inclusion of mustard (Brassica juncea) genotypes in intercropping and sequential cropping systems with sugarcane (Saccharum officinarum). Indian J Agric Sci 69:247–250

    Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R et al (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  Google Scholar 

  • Singh J, Singh DK (2005) Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere 60:32–42

    Article  CAS  Google Scholar 

  • Singh SN, Yadav RL, Yadav DV et al (2010) Introducing autumn sugarcane as a relay intercrop in skipped row planted rice–potato cropping system for enhanced productivity and profitability in the Indian sub-tropics. Exp Agric 46:519–530

    Article  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Tech 22:203–217

    Article  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:585–597

    Article  CAS  Google Scholar 

  • Solanki MK, Wang Z, Wang F-Y, Li CN, Lan TJ, Singh RK, Singh P, Yang LT, Li YR (2017) Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech 19:136–147

    Article  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101:11030–11035

    Article  CAS  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of S-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141

    Article  CAS  Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang Z-G, Jin X, Bao X-G, Li XF, Zhao JH, Sun JH, Christie P, Li L (2014) Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS One 9:e113984. https://doi.org/10.1371/journal.pone.0113984

    Article  CAS  Google Scholar 

  • Wang Z, Solanki MK, Pang F, Singh RK, Yang LT, Li YR, Li HB, Zhu K, Xing YX (2017) Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech 19:492–500

    Article  CAS  Google Scholar 

  • Wei C-Y, Lin L, Luo L-J, Xing YX, Hu CJ, Yang LT, Li YR, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50:657–666

    Article  CAS  Google Scholar 

  • Wilson P, Knight SG (1952) Experiments in bacterial physiology. Burgess, Minneapolis

    Google Scholar 

  • Witte C-P (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  Google Scholar 

  • Xia H-Y, Wang Z-G, Zhao J-H, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013) Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crop Res 154:53–64

    Article  Google Scholar 

  • Xing Y-X, Wei C-Y, Mo Y, Yang LT, Huang SL, Li YR (2016) Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech 18:373–379

    Article  CAS  Google Scholar 

  • Yang W, Li Z, Wang J, Wu P, Zhang Y (2013) Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crop Res 146:44–50

    Article  Google Scholar 

  • Yang F, Liao D, Fan Y, Gao R, Wu X, Rahman T, Yong T, Liu W, Liu J, du J, Shu K, Wang X, Yang W (2017) Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system. Plant Prod Sci 20:1–11

    Article  Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47:457–465

    Article  CAS  Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    CAS  Google Scholar 

  • Zhang F, Li L (2003) Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248:305–312

    Article  CAS  Google Scholar 

  • Zhang J, Hu F, Li H, Gao Q, Song X, Ke X, Wang L (2011) Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice–wheat rotation agroecosystem. Appl Soil Ecol 51:1–8

    Article  Google Scholar 

  • Zhang W-F, Dou Z-X, He P, Ju XT, Powlson D, Chadwick D, Norse D, Lu YL, Zhang Y, Wu L, Chen XP, Cassman KG, Zhang FS (2013) New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc Natl Acad Sci 110:8375–8380

    Article  Google Scholar 

Download references

Funding

The present research work was supported by grants from GXAAS (No. GNKB2014021), National High Technology Research and Development Program (“863” Program) of China (2013AA102604), National Natural Science Foundation of China (31171504, 31101122, 31471449), Guangxi Special Funds for Bagui Scholars’ and Distinguished Experts, Guangxi Natural Science Foundation, and Guangxi Academy of Agriculture Sciences Fund (2011GXNSFF018002, 2012GXNSFDA053011, 2013NXNSFAA019073, and GuiNongKe2014YD01).

Author information

Authors and Affiliations

Authors

Contributions

Y.R.L., L.T.Y. designed the study. M.K.S., F.Y.W., and C.N.L. conducted the experiments. M.K.S. and Z.W. did the isolation and characterization of microbes. T.J.L. supported data collection and analysis. M.K.S., C.N.L., R.K.S., P.S., L.T.Y, and Y.R.L. wrote the manuscript.

Corresponding author

Correspondence to Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Yuan Ge

Electronic supplementary material

ESM 1

(DOCX 1099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, M.K., Wang, FY., Wang, Z. et al. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J Soils Sediments 19, 1911–1927 (2019). https://doi.org/10.1007/s11368-018-2156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2156-3

Keywords

Navigation