Skip to main content

Advertisement

Log in

An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances

  • Natural Organic Matter: Chemistry, Function and Fate in the Environment
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aims of this paper are to outline the state of knowledge with regard to the chemistry of soil organic matter (SOM) prior to 1950; then, to review and evaluate the contributions made by Frank Stevenson during Stevenson’s research period (1950–1994); and subsequently to outline advances that are being made in the modern era.

Progress in the Stevenson period

Frank Stevenson’s research career began in the middle of the twentieth century when a number of techniques of colloid chemistry were available to him, but relatively few of the recently developed instrumental techniques and other procedures of analytical organic chemistry that have enabled significant advances to be made in the chemistry and properties of SOM components.The contributions that Frank Stevenson has made to the chemistry of SOM and of humic substances (HSs) are an integral part of his book (first and second editions) Humus Chemistry: Genesis, Composition, Reactions. The validity of the terms humus and HSs are being questioned as legitimate terms that describe definable components, and SOM is being viewed as a ‘continuum of progressively decomposing organic compounds’. The legitimacy of isolating the organic matter components from their native soil environment is questioned. Those who pose such questions would do well to consider how progress could have been made in the vital life sciences areas of, for example, proteomics and genomics, without the isolation of the relevant cellular components. We recognise the importance of clear and rigorous definitions of HS components and stress the need to isolate these components from the SOM matrix as a prerequisite to the study of the composition, structure and reactivity of these components. We disagree with proposals or suggestions that do not recognise HSs as a scientific entity, and we feel sure that Frank Stevenson would have supported this stance. Various studies of SOM and of HSs have taken place over the centuries, but progress was slow because the tools required to study such complex systems were not available. Frank Stevenson’s research involved many areas of humic chemistry, and his major advances were in aspects of functionality and in the interactions of humic functional groups with metals and to a lesser extent with anthropogenic organic chemicals. His studies of nitrogen and of ammonia in relation to organic matter also had a very great impact.

Progress in the modern era

Frank Stevenson can be said to have provided the stimulation that enabled beginners and established scientists to obtain a good grasp of the fundamentals of SOM and the humic sciences. His scientific contributions have catalysed many of the significant advances that have been made in the field since he retired. In the final section, some of the advances that have been made using modern analytical techniques are addressed and some of the controversial topics that have recently arisen are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard FK (1786) Chemische Untersuchung des Torfs. Crell’s Chem Ann 2:391–403

    Google Scholar 

  • Adams RS, Stevenson FJ (1964) Ammonium sorption and release from rocks and minerals. Soil Sci Soc Am Proc 28:345–351

    Article  CAS  Google Scholar 

  • Allen AL, Stevenson FJ, Kurtz LT (1973) Chemical distribution of residual fertilizer nitrogen in soil as revealed by nitrogen-15 studies. J Environ Quality 2:120–124

    Article  CAS  Google Scholar 

  • Almendros G, Guadalix M E, González-Vila FJ, Martin F (1996) Preservation of aliphatic macromolecules in soil humins. Org. Geochem 24:651–659

  • Ardakani MS, Stevenson FJ (1972) Modified ion-exchange technique for determination of stability-constants of metal-soil organic matter complexes. Soil Sci Soc Am J 36:884–890

    Article  CAS  Google Scholar 

  • Ash HB (1941) On agriculture Vol 1: Books 1–4 (of Translation of De Re Rubica by LIM. Columella). Harvard University Press

  • Azam F, Mulvaney RL, Stevenson FJ (1988) Quantification and potential availability of non-symbiotically 15N in soil. Biol Fertility Soils 7:32–38

    Article  Google Scholar 

  • Azam F, Mulvaney RL, Stevenson FJ (1989a) Transformation of N-15-labelled leguminous plant material in three contrasting soils. Biol Fertility Soils 7:180–185

    Article  Google Scholar 

  • Azam F, Mulvaney RL, Stevenson FJ (1989b) Synthesis of N-15 labelled microbial biomass in soil in situ and extraction of biomass-N. Biol Fertility Soils 8:54–60

    Article  CAS  Google Scholar 

  • Azam F, Stevenson FJ, Mulvaney RL (1989c) Chemical extraction of newly immobilized N-15 and native soil N as influenced by substrate addition rate and soil treatments. Soil Biol Biochem 21:715–722

    Article  CAS  Google Scholar 

  • Barton DHR, Schnitzer M (1963) A new experimental approach to the humic acid problem. Nature 198:217–218

    Article  CAS  Google Scholar 

  • Bremner JM (1950) Some observations on the oxidation of soil organic matter in the presence of alkali. J Soil Sci 1:198–204

    Article  CAS  Google Scholar 

  • Bremner JM, Lees H (1949) Studies of soil organic matter: II. The extraction of organic matter from soil by neutral reagents. J Agric Sci 39:274–279

    Article  CAS  Google Scholar 

  • Burdon J (2001) Are the traditional concepts of the structures of humic substances realistic? Soil Sci 166:752–769

    Article  CAS  Google Scholar 

  • Burges NA, Hurst HM, Walkden B (1964) The phenolic constituents of humic acid and their relation to the lignin of plant cover. Geochim Cosmochim Acta 28:1547–1554

    Article  CAS  Google Scholar 

  • Burns IG, Hayes MHB, Stacey M (1973) Spectroscopic studies on the mechanisms of adsorption of paraquat by humic acid and model compounds. Pesticide Sci 4:201–209

  • Byrne CMP, Hayes MHB, Baer A, Kumar R, Novotny EH, Lanigan G, Richards KG, Fay D, Simpson AJ (2010) Compositional changes in drainage water dissolved organic matter under different land management practices. Water Res 44:4379–4390

    Article  CAS  Google Scholar 

  • Cameron RS, Thornton BK, Swift RS, Posner AM (1972) Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts. J Soil Sci 23:394–408

    Article  CAS  Google Scholar 

  • Cao X, Drosos M, Leenheer JA, Mao J (2016) Secondary structures in a freeze-dried lignite humic acid fraction caused by hydrogen bonding of acidic protons with aromatic rings. Environ Sci Technol 50:1663–1669

    Article  CAS  Google Scholar 

  • Cheng CN, Shufeldt RC, Stevenson FJ (1975) Amino-acid analysis of soils and sediments—extraction and desalting. Soil Biol Biochem 7:143–151

    Article  CAS  Google Scholar 

  • Cheshire MV, Cranwell PA, Falshaw CP, Floyd AJ, Haworth RN (1967) Humic acid: II. Structure of humic acids. Tetrahedron 23:1669–1682

    Article  CAS  Google Scholar 

  • Choudri MB, Stevenson FJ (1957) Chemical and physicochemical properties of soil humic colloids: III extraction of organic matter from soils. Soil Sci Soc Amer Proc 21:508–513

    Article  Google Scholar 

  • Clapp CE (1956) High molecular weight water soluble muck: isolation and determination of constituent sugars of a borate complex forming polysaccharide employing electrophoretic techniques. PhD Thesis, Cornell University

  • Clapp CE, Hayes MHB (1999) Characterization of humic substances isolated from clay and silt-sized fractions of a corn residue-amended agricultural soil. Soil Sci 164:899–913

    Article  CAS  Google Scholar 

  • Clapp CE, Hayes MHB, Simpson AJ, Kingery WL (2005) Chemistry of soil organic matter. In: Tabatabai MA, Sparks DL (eds) Chemical processes in soils. Soil Sci Soc Amer Inc., Madison, pp. 1–150

    Google Scholar 

  • Conte P, Piccolo A (1999) High pressure size exclusion chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance. Chemosphere 38:517–528

    Article  CAS  Google Scholar 

  • Courtier MD, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, Simpson MJ, Maas WE, Fey M, Andrew B, Struppe J, Hutchins H, Krishnamurthy S, Kumar R, Monette M, Stronks HJ, Hume A, Simpson AJ (2012) Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magnetic Resonance 217:61–76

    Article  CAS  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould, through the action of worms, with observations on their habits. John Murray, London

    Book  Google Scholar 

  • Davy H (1813) Elements of agricultural chemistry, London

  • Dehérain P (1884) Recherches sur les fermentations du fumier de farme. Ann Agric 10:385

    Google Scholar 

  • Dehérain P (1902) Traité de chimieagricole 2nd edn, Paris

  • Dhariwal AP, Stevenson FJ (1958) Determination of fixed ammonium in soils. Soil Sci 86:343–349

    Article  CAS  Google Scholar 

  • DiDonato N, Hatcher P (2016) Multi-dimensional NMR and ESI-FTICRMS analysis of soil humic acid: an investigation of aliphatic carboxylic acids. Proc 18th Inter’l IHSS Conf, Kanazawa, Japan

  • DiDonato N, Chen H, Waggoner D, Hatcher PG (2016) Potential origin and formation for molecular components of humic acids in soils. Geochim Cosmochim Acta 178:210–222

    Article  CAS  Google Scholar 

  • Dokuchaev VV (1883) Russian Chernozem (Russkii chernozem); also (1949) soch. 3, Izd Akad Nauk SSSR

  • Dormaar JF (1969) Reductive cleavage of humic acids of Chernozem soils. Plant Soil 31:182–184

    Article  CAS  Google Scholar 

  • Durrum EL (1951) Continuous electrophoresis and ionophoresis on filter paper. J Am Chem Soc 73:4875–4884

    Article  CAS  Google Scholar 

  • Ellis GP (1959) The Maillard reaction. Adv Carbohyd Chem 14:63–124

    CAS  Google Scholar 

  • Enders C (1943a) pH-Abhangigkeit und Gleichgewichtsreaktion der Aufspaltung der Zucker zu Methylglyoxal. II. Mitteilung. Biochem Z 313:265–269

    CAS  Google Scholar 

  • Enders C (1943b) Uber den Chemismus der Huminsauerbildung unter Physiologischen Bedingungen IV. Mitteilung. Die Rolle der Mikroorganismen bei den humifizierungs-vorgangen. Biochem Z 315:259–292

    CAS  Google Scholar 

  • Enders C, Fries G (1936) Zur Analogie von Melanoidinen und Huminsauren. Kolloid Z 76:289–291

    Article  CAS  Google Scholar 

  • Enders C, Sigurdsson S (1947) Uber den Chemismus den Huminsaurenbildung unter physiologischen Bedingungen. VII. Mitteilung. Biochem Z 318:44–46

    CAS  Google Scholar 

  • Enders C, Tschapek M, Glane R (1948) Vergleichende Untersuchungen einiger kolloider Eigenschaften von naturlichen Huminsauren und synthetischen Melanoidinen. Kolloid Z 110:240–244

    Article  CAS  Google Scholar 

  • Fitch A, Stevenson FJ (1984) Comparison of models for determining stability-constants of metal-complexes with humic substances. Soil Sci Soc Am J 48:1044–1050

    Article  CAS  Google Scholar 

  • Fitch A, Stevenson FJ, Chen Y (1986) Complexation of Cu(II) with a soil humic acid—response characteristics of the Cu(II) ion-selective electrode and ligand concentration effects. Org Geochem 9:109–116

    Article  CAS  Google Scholar 

  • Flaig W (1960) Comparative chemical investigations on natural humic compounds and their model substances. Sci Proc Royal Dublin Soc 4:49–62

    Google Scholar 

  • Flaig W, Beutelspacher H, Reitz E (1975) Chemical composition and physical properties of humic substances. In: Gieseking JE (ed) Soil components. Springer-Verlag, Berlin, pp. 1–219

    Google Scholar 

  • Freney JR, Stevenson FJ (1966) Organic sulfur transformations in soils. Soil Sci 101:307–316

    Article  CAS  Google Scholar 

  • Freney JR, Stevenson FJ, Beavers AH (1972) Sulfur-containing amino acids in soil hydrolysates. Soil Sci 114:468–476

    Article  CAS  Google Scholar 

  • Fuchs W (1931) Die Chemie der Kohle. Springer, Berlin

    Book  Google Scholar 

  • Gascho GJ, Stevenson FJ (1968) An improved method for extracting organic matter from soil. Soil Sci Soc Amer Proc 32:117–119

    Article  CAS  Google Scholar 

  • German RO (1836) A chemical investigation of chernozem soils in our southern districts for determining their various properties. Zemled. Zh. Moskov. Obshch. Sel. Kho 5

  • German RO (1837) Chemical investigation on chernozem occurring in southern districts of Russia. Zemled Zh Moskov Obshch Sel Kho 1

  • Goh KM, Stevenson FJ (1971) Comparison of the infrared spectra of synthetic and natural humic and fulvic acids. Soil Sci 112:392–400

    Article  CAS  Google Scholar 

  • Greene G, Steelink C (1962) Structure of humic acid. II. Some copper oxide oxidation products. J Org Chem 27:170–174

    Article  CAS  Google Scholar 

  • Griffith SM, Schnitzer M (1976) The alkaline cupric oxide oxidation of humic and fulvic acids extracted from tropical volcanic soils. Soil Sci 122:191–201

    Article  CAS  Google Scholar 

  • Haider K, Martin JP (1967) Synthesis and transformation of phenolic compounds by Epicoccum nigrum. Soil Sci Soc Am Proc 31:766–772

    Article  CAS  Google Scholar 

  • Hatcher P, Breger I, Maciel G, Szeverenyi, N (1985) Geochemistry of humin. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Wiley, New York

  • Haworth RN (1971) The chemical nature of humic acids. Soil Sci 111:71–79

    Article  CAS  Google Scholar 

  • Hayes MHB (1960) Subsidence and humification in peats. PhD Dissertation, Ohio State University

  • Hayes MHB (1985) Extraction of humic substances from soil. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment, and water. Wiley, New York, pp. 329–362

    Google Scholar 

  • Hayes MHB (2006) Solvent systems for the isolation of organic components from soils. Soil Sci Soc Am J 70:986–994

    Article  CAS  Google Scholar 

  • Hayes MHB (2009) Evolution of concepts of environmental natural nonliving organic matter. In: Senesi N, Xing B, Huang PM (eds) IUPAC series on biophysico-chemical process in environmental systems. Vol 2 Biophysico-chemical process involving natural nonliving organic matter in environmental systems. John Wiley & Sons, New York, pp. 1–39

    Google Scholar 

  • Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (1989a) Humic substances II. In search of structure. Wiley, Chichester

    Google Scholar 

  • Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (1989b) The search for structure: setting the scene. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. Wiley, In Search of Structure, pp. 3–31

    Google Scholar 

  • Hayes MHB, Pick ME, Toms BA (1975a) Interactions between clay minerals and bipyridylium herbicides. Residue Reviews 57:1–25

    CAS  Google Scholar 

  • Hayes MHB, Swift RS (1978) The chemistry of soil organic colloids. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil constituents. Wiley, Chichester, pp. 179–320

    Google Scholar 

  • Hayes MHB, Swift RS (1990) Genesis, isolation, composition and structures of soil humic substances. In: De Boodt MF, Hayes MHB, Herbillon A (eds) Soil colloids and their associations in aggregates. Plenum, New York, pp. 245–305

    Chapter  Google Scholar 

  • Hayes MHB, Swift RS, Wardle RE, Brown JK (1975b) Humic materials from an organic soil: a comparison of extractants and of properties of extracts. Geoderma 13:231–245

    Article  CAS  Google Scholar 

  • Hayes MHB, Swift RS (2016) Is humin the same everywhere? 01-3 presentation, Proc 18th Intern’l IHSS Conf, Kanazawa, Japan

  • Hayes TM, Hayes MHB, Skjemstad JO, Swift RS (2008) Compositional relationships between organic matter in a grassland soil and its drainage waters. Eur J Soil Sci 59:603–616

    Article  CAS  Google Scholar 

  • Hayes TM, Hayes MHB, Swift RS (2012) Detailed investigation of organic matter components in extracts and drainage waters from a soil under long term cultivation. Org Geochem 52:13–22

    Article  CAS  Google Scholar 

  • He XT, Mulvaney RL, Stevenson FJ et al (1990) Characterization of chemically fixed liquid anhydrous ammonia in an Illinois Drummer soil. Soil Sci Soc Am J 54:775–780

    Article  CAS  Google Scholar 

  • He XT, Mulvaney RL, Stevenson FJ (1991) Transformations of chemically fixed liquid anhydrous ammonia by soil-microorganisms. Biol Fertil Soils 11:145–150

    Article  CAS  Google Scholar 

  • He XT, Stevenson FJ, Mulvaney RL et al (1988a) Incorporation of newly immobilized N-15 into stable organic forms in soil. Soil Biol Biochem 20:75–81

    Article  CAS  Google Scholar 

  • He XT, Stevenson FJ, Mulvaney RL et al (1988b) Extraction of newly immobilized N-15 from an Illinois Mollisol using aqueous phenol. Soil Biol Biochem 20:857–862

    Article  CAS  Google Scholar 

  • Hodge JE (1953) Chemistry of Browning reactions in model systems. Agric Food Chem 1:928–943

    Article  CAS  Google Scholar 

  • Hoppe-Seyler F (1889) Uber Huminsubstanzen, ihre Emstenung and ihre Eigenschaften. 2. Physiol Chem 13:66–121

    Google Scholar 

  • Jakab T, Dubach P, Mehta NC, Deuel H (1963) AbbauHuminstoffen. 2. Abbau mit Alkali. Z Pflanzenahr Dung Bodenk 102:8–17

    Article  Google Scholar 

  • Jenkinson DS (1981) The fate of plant and animal residues in soil. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil processes. Wiley, Chichester, pp. 505–561

    Google Scholar 

  • Kelley KR, Stevenson FJ (1985) Characterization and extractability of immobilized N-15 from the soil microbial biomass. Soil Biol Biochem 17:517–523

    Article  Google Scholar 

  • Kelley KR, Stevenson FJ (1987) Effects of carbon source on immobilization and chemical-distribution of fertilizer nitrogen in soil. Soil Sci Soc Am J 51:946–951

    Article  CAS  Google Scholar 

  • Kelley KR, Stevenson FJ (1995) Forms and nature of organic N in soil. Fertilizer Research 42:1–11

    Article  CAS  Google Scholar 

  • Khan SU, Schnitzer M (1971) Further investigations of the chemistry of fulvic acid, a soil humic fraction. Can J Chem 49:2302–2309

    Article  CAS  Google Scholar 

  • Khan SU, Schnitzer M (1972) Permanganate oxidation of humic acids extracted from a grey wooded soil under different cropping systems and fertilizer treatments. Geoderma 7:113–120

    Article  CAS  Google Scholar 

  • Khanna SS, Stevenson FJ (1962) Metallo-organic complexes in soil: I. Potentiometric titration of some soil organic matter isolates in the presence of transition metals. Soil Sci 93:298–305

    Article  CAS  Google Scholar 

  • Knicker H (2011) Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quatern Int 243:251–263

    Article  Google Scholar 

  • Knicker H, Hischer A, de la Rosa JM, Gonzales-Perez JA, Gonzales-Vila FJ (2013) Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils. Geoderma 197-198:43–50

    Article  CAS  Google Scholar 

  • Komov II (1789) Agriculture (Ozemledelii) Moscow (See also Kondratev, EV (1940) Investigations on humic acids. Hymatomelanic acid, Zh. priklad. Khim 13

  • Kononova MM (1961) Soil organic matter: its nature, its role in soil formation and in soil fertility. Pergamon Press, Oxford

    Google Scholar 

  • Kononova MM (1966) Soil organic matter: its nature, its role in soil formation and in soil fertility, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Kononova MM (1975) Humus of virgin and cultivated soils. In: Gieseking JE (ed) Soil components. Springer Verlag, Berlin, New York, pp. 475–526

    Chapter  Google Scholar 

  • Kupryianchyk D, Hale S, Zimmerman AR, Harvey O, Rutherford AS, Abiden S, Knicker H, Schmidt HP, Rumpel C, Cornielissen G (2016) Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar. Chemosphere 144:879–887

    Article  CAS  Google Scholar 

  • Kwapinski W, Wolfram P, Byrne C, Melligan F, Novotny EH, Leahy JJ, Hayes MHB (2010a) Properties of biochar produced from Miscanthus x giganteus and its influence the growth of maize (Zea mays L). Proc 15th International Conference IHSS, Teneriffe Vol 1:95–98

  • Kwapinski W, Byrne CMP, Kryachko E, Wolfram P, Adley C, Leahy JJ, Novotny EH, Hayes MHB (2010b) Biochar from biomass and waste. Waste and Biomass Valorisation 1:177–189

    Article  CAS  Google Scholar 

  • Leenheer, J. (2016) The unique structural chemistry of humic substances. 01-01 Proc 18th Intern’l IHSS Conf, Kanazawa, Japan

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: Science and Technology 2nd edn. Earthscan Publishers

  • Lomonosov M (1763) The first principles of metallurgy or ore-mining. Humus (second suppl soil layers). St. Petersburg. See also: (1940) Istoriya agrikul’tury, Izd. Akad. Nauk SSSR

  • Lopez-Martin M, Velasco-Molina M, Knicker H (2016) Variability of the quality and quantity of organic matter in soil affected by multiple wildfires. J Soils Sediments 16:360–370

    Article  Google Scholar 

  • Maillard LC (1912) Action des acides amines sur les sucre; formation des melanoidins par voie methodique. C R Acad Sci Paris 154:66–68

    CAS  Google Scholar 

  • Maillard LC (1916) Synthese des matieres humiques par action des acides amines sur les sucres reductours. Ann Chim 5:258–317

    CAS  Google Scholar 

  • Maillard LC (1917) Identite des materies humiques de syntheses avec les materies humiques naturelles. Ann Chim 7:113–152

    CAS  Google Scholar 

  • Malcolm RL, MacCarthy P (1992) Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water. Environ Inter 18:597–607

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1977) Decomposition in soil of specifically 14C-labeledDHP and corn stalk lignins to humic acid-type polymers and coniferyl alcohols. Proc. IAEA-FAO-Agrochemica Symposium (Braunschweig, 1976) 2:23–32

  • Martin JP, Haider K, Saiz-Jimenez C (1974) Sodium amalgam reductive degradation of fungal and model phenolic polymers, soil humic acids and simple phenolic compounds. Soil Sci Soc Am Proc 38:760–765

    Article  CAS  Google Scholar 

  • Matsuda K, Schnitzer M (1972) The permanganate oxidation of humic acids extracted from acid soils. Soil Sci 114:185–193

    Article  CAS  Google Scholar 

  • Mayadon J, Sarkar JM (1974) Etude des phenoloxydases extradites d’un litiere de foret. Soil Biol Biochem 6:269–274

    Article  Google Scholar 

  • Mendez J, Stevenson FJ (1966a) Detection of phenolic carboxylic acids by gas-liquid chromatography. J Gas Chromatography 4:483–485

    Article  CAS  Google Scholar 

  • Mendez J, Stevenson FJ (1966b) Reductive cleavage of humic acids with sodium amalgam. Soil Sci 102:85–93

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255

    Article  CAS  Google Scholar 

  • Müller P (1887) Studien űber die natűrlichen Humusformen, Berlin

  • Mylotte R, Verheyen TV, Reynolds A, Dalton C, Patti AF, Chang RR, Burdon J, Hayes MHB (2015) Isolation and characterisaton of recalcitrant organic components from an estuarine sediment core. J Soils Sediments 15:221–224

    Article  CAS  Google Scholar 

  • Mylotte R, Sutrisno A, Farooq H, Masoom H, Soon R, Hayes MHB, Simpson AJ (2016) Insights into the composition of recalcitrant organic matter from estuarine sediments using NMR spectroscopy. Org Geochem. doi:10.1016/j.orggeochem.2016.05.011

    Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12:1187–1199

    Article  CAS  Google Scholar 

  • Nebbioso A, Mazzei P, Savy D (2014) Reduced complexity of multidimensional and diffusion NMR spectra of soil humic fractions as simplified by humeomics. Chem Biol Technol Agric 1:24

    Article  CAS  Google Scholar 

  • Nebbioso A, Vinci G, Drosos M, Spaccini R, Piccolo A (2015) Unravelling the composition of the unextractable soil organic fraction (humin) by humeomics. Biol Fertil Soils 51:443–451

    Article  CAS  Google Scholar 

  • Nebbioso, A, Drosos, M, Zuhleke, S, Spiteller, M, Piccolo, A (2016) Direct humeome extraction from two German soils and molecular characterization by Electrospray-Orbitrap-Mass Spectrometry (ESIOrbitrap-MS). 01-08 Proc 18th International IHSS Conf, Kanasawa, Japan

  • Neyroud JA, Schnitzer M (1974a) The chemistry of high molecular weight fulvic acid fraction. Can J Chem 52:4123–4132

    Article  CAS  Google Scholar 

  • Neyroud JA, Schnitzer M (1974b) The exhaustive alkaline cupric oxide oxidation of humic acid and fulvic acid. Soil Sci Soc Amer Proc 38:907–913

    Article  CAS  Google Scholar 

  • Neyroud JA, Schnitzer M (1975) The alkaline hydrolysis of humic substances. Geoderma 13:171–188

    Article  CAS  Google Scholar 

  • Norman RJ, Kurtz LT, Stevenson FJ (1987a) Solubilization of soil organic matter by liquid anhydrous ammonia. Soil Sci Soc Am J 51:809–812

    Article  CAS  Google Scholar 

  • Norman RJ, Kurtz LT, Stevenson FJ (1987b) Distribution and recovery of nitrogen-N-15 labeled liquid anhydrous ammonia among various soil fractions. Soil Sci Soc Am J 51:235–241

    Article  CAS  Google Scholar 

  • Novotny EH, Branco de Freitas M, Claudia M, Carvalho MT, Madari BE (2015) Biochar: Pyrogenic carbon for agricultural use—a critical review. Revista Brasileirade Ciencia do Solo 39:321–344

    Article  CAS  Google Scholar 

  • Orlov DS (1985) Humus acids of soils. Russian translations Series 35. A.A. Balkema/Rotterdam

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Cozzolino A (2001) Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Sci 166:174–185

    Article  CAS  Google Scholar 

  • Piccolo A, Stevenson FJ (1982) Infrared-spectra of Cu2+ Pb2+ and Ca2+ complexes of soil humic substances. Geoderma 27:195–208

    Article  CAS  Google Scholar 

  • Piccolo A, Stevenson FJ (1994) Infrared spectroscopy evidence of thermal decarboxylation in potassium salts of humic substances. In N. Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. 6th International Conference of IHSS, Monopoli, Italy (1992) Elsevier, London. pp. 329–334

  • Piterina AV, Hayes MHB (2012a) Influences of herbaceous biochar on root architecture, infection pattern and diversity of AMF symbionts during establishment stage (14 days) of maize growth. Proc 4th International Biochar Conference, Beijing, pp 143–146.

  • Piterina AV, Hayes MHB (2012b) Influence of the addition of herbaceous biochar on the metabolic profiles of the maize rhizosphere microbial community—the BIOLOG ECO, GP and GN Plates Techniques. Proc. 4th International Biochar Conference, Beijing, pp 74–77

  • Piper TJ, Posner AM (1972) Sodium amalgam reduction of humic acid—evaluation of the method; II. Application of the method. Soil Biol Biochem 4:513–531

  • Post H von (1862) Studien uber die koprogenen Erdbildungen unser Tage. Cited by Ramann (1888), Landw Jb:405; See also: Forsok tillensystematik upstellning af vextstallena i mellersta Sverige. Bonnier Stockholm

  • Preston CM, Newman RH (1995) NMR of de-ashed soil humin in a second-growth Douglas-fir stand of coastal British Columbia. Geoderma 68:229-241

  • Ramann E (1888) Die von Postischen Arbeiten tiber Schlamm, Moor, Torf, und Humus. Landw Jahrb 17:405–420

    Google Scholar 

  • Rice JA, MacCarthy P (1988) Comments on the literature of the humin fraction of humus. Geoderma 43:65–73

  • Rice J A, MacCarthy P (1992) Disaggregation and characterization of humin. Sci Total Environ 117(118):83–88

  • Russell EW (1973) Soil conditions and plant growth, 10th edn. Longman, London

    Google Scholar 

  • Saussure, T de (1804) Recherches chimique sur le Vegetation. Chez la Vc Nyon, Paris. Reprinted Gauthier-Villars, Paris 2010

  • Savage SM, Stevenson FJ (1961) Behavior of soil humic acids towards oxidation with hydrogen peroxide. Soil Sci Soc Am Proc 25:35–39

    Article  CAS  Google Scholar 

  • Simpson A J, Song G, Smith E, Lam B, Novotny E H, Hayes MHB (2007) Unravelling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ Sci Technol 41:876–883

  • Schackley S, Ruysschaert G, Zwort K, Glaser B (2016). Biochar in European soils and agriculture: science and practice. Taylor and Francis Routledge

  • Schnitzer M (1974a) The methylation of humic substances. Soil Sci 117:94–102

    Article  CAS  Google Scholar 

  • Schnitzer M (1974b) Alkaline cupric oxide oxidation of a methylated fulvic acid. Soil Biol Biochem 6:1–6

    Article  CAS  Google Scholar 

  • Schnitzer M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Developments in soil science 8. Elsevier, Amsterdam

    Google Scholar 

  • Schnitzer M, Gupta UC (1965) Determination of acidity in soil organic matter. Soil Sci Soc Am Proc 29:277–277

    Google Scholar 

  • Schnitzer M, Ortiz de Serra MI (1973a) The chemical degradation of a humic acid. Can J Chem 51:1554–1566

    Article  CAS  Google Scholar 

  • Schnitzer M, Ortiz de Serra MI (1973b) The sodium-amalgam reduction of soil and fungal humic substances. Geoderma 9:119–128

    Article  CAS  Google Scholar 

  • Schnitzer M, Wright JR (1960) Studies of the oxidation of the organic matter of the Ao and Bh horizons of a podzol. Trans 7th Intern Congr Soil Sci (Madison) 2:112–119

    Google Scholar 

  • Schreiner O, Shorey, EC (1909) The isolation of harmful substances from soils. USDA Bureau of Soils, Bulletin 53

  • Schreiner O, Shorey EC (1910) Chemical nature of soil organic matter. USDA Bureau of Soils, Bulletin 74

  • Schuffelen AC, Bolt, GH (1950) Some notes on the synthesis of humic compounds. Landbouwktijdschr, 62, ste Jaargang No. 4/5

  • Schulten HR, Schnitzer M (1993) A state of the art structural concept for humic substances. Naturwissenschaften 80:29–30

    Article  CAS  Google Scholar 

  • Shmuk AA (1924) The chemical nature of soil organic matter. Byull Pochvoveda 5–7

  • Simpson A J, Song G, Smith E, Lam B, Novotny E H, Hayes MHB (2007) Unravelling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ Sci Technol 41:876–883

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. chapter 2. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Song G, Hayes MHB, Novotny EH, Simpson AJ (2011) Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid. Naturwissenschaften 98:7–13

    Article  CAS  Google Scholar 

  • Song G, Novotny EH, Simpson AJ, Clapp CE, Hayes MHB (2008) Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur J Soil Sci 59:505–516

    Article  CAS  Google Scholar 

  • Stevenson FJ (1952) Physico-chemical investigations of clay adsorbed organic colloids. Ph.D. Dissertation, Ohio State University

  • Stevenson FJ (1954) Ion exchange chromatography of amino acids in soil hydrolysates. Soil Sci Soc Am Proc 18:373–377

    Article  CAS  Google Scholar 

  • Stevenson FJ (1957a) Investigations of aminopolysaccharides in soils: I. Colorimetric determination of hexosamines in soil hydrolysates. Soil Sci 83:113–122

    Article  CAS  Google Scholar 

  • Stevenson FJ (1957b) Investigations of aminopolysaccharides in soils: 2. Distribution of hexosamines in some soil profiles. Soil Sci 84:99–106

    Article  CAS  Google Scholar 

  • Stevenson FJ (1957c) Distribution of the forms of nitrogen in some soil profiles. Soil Sci Soc Am Proc 21:283–287

    Article  CAS  Google Scholar 

  • Stevenson FJ (1959a) Carbon-nitrogen relationships in soil. Soil Sci 88:201–208

    Article  CAS  Google Scholar 

  • Stevenson FJ (1959b) Presence of fixed ammonium in rocks. Science 130:221–222

    Article  CAS  Google Scholar 

  • Stevenson FJ (1959c) Chemical nature of the nitrogen in the fulvic fraction of soil organic matter. Soil Sci Soc Am Proc 24:472–477

    Article  Google Scholar 

  • Stevenson FJ (1960) Microdetermination of nitrogen in rocks and silicate minerals by sealed tube digestion. Anal Chem 32:1704–1706

    Article  CAS  Google Scholar 

  • Stevenson FJ (1962) Chemical state of nitrogen in rocks. Geochim Cosmochem Acta 26:797–809

    Article  CAS  Google Scholar 

  • Stevenson FJ (1966) Stability-constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Sci Soc Am J 40:665–672

  • Stevenson FJ (1972a) Organic matter reactions involving herbicides in soil. J Env Qual 1:333–343

    Article  CAS  Google Scholar 

  • Stevenson FJ (1972b) Role and function of humus in soil with emphasis on adsorption of herbicides and chelation of micronutrients. Bioscience 22:643–650

    Article  CAS  Google Scholar 

  • Stevenson FJ (1976a) Stability-constants of Cu2+, Pb2+, and CD2+ complexes with humic acids. Soil Sci Soc Am J 40:665–672

    Article  CAS  Google Scholar 

  • Stevenson FJ (1976b) Organic matter reactions involving pesticides in soil. In Kaufman D et al. (eds) ACS Symposium Series, No. 29, Bound and Conjugated Pesticide Residues (Vail, USA, June, 1975) American Chemical Society, Washington, DC pp 180–207

  • Stevenson FJ (1977) Nature of divalent transition-metal complexes of humic acids as revealed by a modified potentiometric titration method. Soil Sci 123:10–17

    Article  CAS  Google Scholar 

  • Stevenson FJ (1979) Lead-organic matter interactions in a mollisol. Soil Biol Biochem 11:493–499

    Article  CAS  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry; genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Stevenson FJ (1983) Isolation and identification of amino-sugars in soils. Soil Sci Soc Am J 47:61–65

    Article  CAS  Google Scholar 

  • Stevenson FJ (1989) Reductive cleavage of humic substances. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, pp. 121–142

    Google Scholar 

  • Stevenson FJ (1991) Organic matter-micronutrient reactions in soil. In: Mortvedt JJ et al (eds) Micronutrients in agriculture. Soil Sci Soc America, Madison, pp. 145–186

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry; genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Stevenson FJ, Ardakani MS (1972) Organic matter reactions involving micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in Agriculture. Proc. Symposium, Muscle Shoals, Ala, April 1971. Soil Sci Soc America Inc, , Madison, pp 79–114

  • Stevenson FJ, Braids OC (1968) Variation in relative distribution of amino sugars with depth in some soil profiles. Soil Sci Soc Am Proc 32:598–600

    Article  CAS  Google Scholar 

  • Stevenson FJ, Chen Y (1991) Stability constants of copper (II) humate complexes determined by modified potentiometric titration. Soil Sci Soc Am J 55:1586–1591

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cheng CN (1969) Amino acid levels in argentine basin sediments—correlation with quaternary climate changes. J Sedimentary Petrology 39:345–349

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cheng CN (1970) Amino acids in sediments. Recovery by acid hydrolysis and quantitative estimation by a colorimetric procedure. Geochim Cosmochim Acta 34:77–88

    Article  CAS  Google Scholar 

  • Stevenson FJ, Dhariwal APS (1959) Distribution of fixed ammonium in soils. Soil Sci Soc Am Proc 23:121–125

    Article  CAS  Google Scholar 

  • Stevenson FJ, Dhariwal APS, Choudhri MB (1958) Further evidence for naturally occurring fixed ammonium in soils. Soil Sci 85:42–46

    Article  CAS  Google Scholar 

  • Stevenson FJ, Fitch A, Brar MS (1993) Stability-constants of Cu(II)-humate complexes-comparison of selected models. Soil Sci 155:77–91

    Article  CAS  Google Scholar 

  • Stevenson FJ, Goh KM (1971) Infrared spectra of humic acids and related substances. Geochim Cosmochim Acta 35:471–483

    Article  CAS  Google Scholar 

  • Stevenson FJ, Goh KM (1972) Comparison of infrared spectra of synthetic and natural humic and fulvic acids: evidence for non-specificity of analytical methods for oxygen containing functional groups. Soil Sci 113:334–345

    Article  CAS  Google Scholar 

  • Stevenson FJ, Goh KM (1974) Infrared spectroscopy of humic acids-elimination of interference due to hygroscopic moisture and structural-changes accompanying heating with KBr. Soil Sci 117:34–41

    Article  CAS  Google Scholar 

  • Stevenson FJ, Harrison RM (1966) Nitrosation of soil organic matter. 2. Gas chromatographic separation of gaseous products. Soil Sci Soc Am Proc 30:609–612

  • Stevenson FJ, Harrison RM, Westlake RA (1970) Nitrosation of soil organic matter 3. Nature of organic matter produced by reaction of nitrite with lignins, humic substances, and phenolic constituents under neutral and slightly acidic conditions. Soil Sci Soc Am Proc 34:430–435

  • Stevenson FJ, Kidder G, Tilo SN (1967) Extraction of organic nitrogen and ammonium from soil with hydrofluoric acid. Soil Sci Soc Am Proc 31:71–76

    Article  CAS  Google Scholar 

  • Stevenson FJ, Krastano SA, Ardakani MS (1973) Formation constants of Cu2+ complexes with humic and fulvic acids. Geoderma 9:129–141

    Article  CAS  Google Scholar 

  • Stevenson FJ, Marks JD, Varner JE, Martin WP (1952) Electrophoretic and chromatographic investigations of clay-adsorbed organic colloids. 1. Preliminary investigations. Soil Sci Soc Amer Proc 16:69–73

    Article  CAS  Google Scholar 

  • Stevenson FJ, Mendez J (1967) Reductive cleavage products of soil humic acids. Soil Sci 103:383–388

    Article  CAS  Google Scholar 

  • Stevenson FJ, Swaby RJ (1964) Nitrosation of soil organic matter I. Nature of gases evolved during nitrous acid treatment of lignins and humic substances. Soil Sci Soc Am Proc 28:773–778

    Article  CAS  Google Scholar 

  • Stevenson FJ, van Winkle Q, Martin WP (1953) Physicochemical investigations of clay-adsorbed organic colloids. II. Soil Sci Soc Am Proc 17:31–34

    Article  CAS  Google Scholar 

  • Stevenson FJ, Welch LF (1979) Migration of applied lead in a field soil. Env Sci Technology 13:1255–1259

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis: part 3 chemical methods. SSSA book series 5. Soil Science Society of America, Madison, pp. 1011–1069

    Google Scholar 

  • Swift RS, Posner AM (1972) Autooxidation of humic acid under alkaline conditions. J Soil Sci 23:381–393

    Article  CAS  Google Scholar 

  • Thaer AD von (1809) Grundsatze der rationale Landwirtschaft

  • Trusov AG (1914-16) The humification of compounds which are constituents of plants Sel Khoz. Lesovod, Oct, Nov; (1915) ibid, Apr, July, Nov; (1916) ibid, Mar, Sept, Oct, Nov Routledge

  • Trusov AG (1916) Some chemical-biological processes occurring during the humification of plant residues. Zh Opyt Agron 17

  • Tipping E, Fitch A, Stevenson FJ (1995) Proton and copper binding of humic acid—application of a discrete-site electrostatic ion-binding model. Eur J Soil Sci 46:95–101

    Article  CAS  Google Scholar 

  • van Bemmelen J (1888) Die Absorptionsverbindungen und das Absorptionsvermogen der der Ackererde. Landw Vers Sta 35:69

    Google Scholar 

  • von Liebig J (1846) Die Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Vieweg, Braunschweig

    Google Scholar 

  • Velasco-Molina M, Berns AE, Macias F et al (2016) Biochemically altered charcoal residues as an important source of soil organic matter in subsoils of fire-affected subtropical regions. Geoderma 262:62–70

    Article  CAS  Google Scholar 

  • Wagner GH, Stevenson FJ (1965) Structural arrangements of functional groups in soil humic acids as revealed by infrared analysis. Soil Sc Soc Amer Proc 29:43–48

    Article  CAS  Google Scholar 

  • Waksman SA (1936) Humus origin, chemical composition, and importance in nature. Williams & Wilkins, Baltimore, MD

  • Waksman SA, Iyer KRN (1932) Contribution to our knowledge of the chemical nature and origin of humus: I. On the synthesis of the “humus nucleus”. Soil Sci 34:43–69

    Article  CAS  Google Scholar 

  • Waksman SA, Iyer KRN (1933) Contribution to our knowledge of the chemical nature and origin of humus: IV. Fixation of proteins by lignins and formation of complexes resistant to microbial decomposition. Soil Sci 36:69–82

    Article  CAS  Google Scholar 

  • Wallerius J (1761) Agriculturae Fundamenta Chemica. Uppsala. See also: (1940) Istoriya agrikul’tury. Izd Akad Nauk SSSR

  • Williams W (1939) Soil science Moscow, in Russian

  • Wolfrom ML, Schlicht RC, Langer AW, Rooney CS (1953) Chemical interactions of amino compounds and sugars:VI. The repeating unit in browning polymers. J Am Chem Soc 75:1013–1013

    Article  CAS  Google Scholar 

  • Woods WI, Glaser B (2004) Towards an understanding of Amazonian Dark earths. In: Glaser B, Woods WI (eds) Amazonian dark earths: explorations in space and time. Springer-Verlag, Berlin

    Google Scholar 

  • Wright JR, Schnitzer M (1959a) Oxygen containing functional groups in the organic matter of the Ao and Bh horizon of a podzol soil. Nature (London) 184:1462–1463

    Article  CAS  Google Scholar 

  • Wright JR, Schnitzer M (1959b) Alkaline permanganate oxidation of the organic matter of the Ao and B2 horizons of a podzol. Can J Soil Sci 39:44–53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. B. Hayes.

Additional information

Responsible editor: Heike Knicker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, M.H.B., Swift, R.S. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances. J Soils Sediments 18, 1212–1231 (2018). https://doi.org/10.1007/s11368-016-1636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1636-6

Keywords

Navigation