Skip to main content

Advertisement

Log in

Biochar from Biomass and Waste

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

There is an increasing realisation that biomass and organic wastes are valuable feedstocks for second generation biorefining processes that give rise to platform chemicals to substitute for dwindling petrochemical resources, and for pyrolysis processes that produce syngas, bio-oil, and biochar from biomass, organic wastes, and the biorefining residuals of the future. The experimental work described has focused on physical properties and compositions of biochars produced from miscanthus (Miscanthus × giganteus), willow (Salix spp) and pine (Pinus sylvestris) at 500°C and at 400, 500, and 600°C in the case of the miscanthus. Although the morphologies of the cell structures were maintained in the pyrolysis, the surface area of the miscanthus biochar was greatly increased by heating at 600°C for 60 min. Nuclear magnetic resonance spectra showed the disappearance of evidence for the carbohydrate and lignin plant components as the pyrolysis temperature was raised, and the compositions of miscanthus biochars after heating for 10 and for 60 min at 600°C were very similar and composed of fused aromatic structures and with no traces of the aliphatic components in the starting materials. In greenhouse and growth chamber experiments the growth of maize (Zea mays L) seedlings was found to be inhibited by soil amendments with biochar from miscanthus formed at 400°C for 10 min, but stimulated by miscanthus char formed at 600°C for 60 min. In the course of discussion the relevance of the results obtained is related to the roles that soil amendments with biochar can have on soil fertility, carbon sequestration, on the emissions of greenhouse gases from soil, on fertilizer requirements, and on waste management. It is clear that biochar soil amendments can have definite agronomic and environmental benefits, but it will be essential to have clear guidelines for biochar production from various feedstocks and under varying pyrolysis parameters. It will be equally important to have a classification system for biochars that clearly indicate the product compositions that will meet acceptable standards. A case can be made for sets of standard biochars from different substrates that meet the required criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lehmann, J.: Bio-energy in the black. Front Ecol. Environ. 5(7), 381–387 (2007)

    Article  Google Scholar 

  2. Laird, D.A.: The Charcoal Vision: a win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 100(1), 178–181 (2008)

    Article  MathSciNet  Google Scholar 

  3. Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Schomberg, H.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3, 195–206 (2009)

    Google Scholar 

  4. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W.: The Terra Preta phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41 (2001)

    Article  Google Scholar 

  5. Novotny, E.H., deAzevedo, E.R., Bonagamba, T.J., Cunha, T.J.F., Madari, B.E., de M. Benites, V., Hayes, M.H.B.: Studies of the compositions of humic acids from Amazonian Dark Earth Soils. Environ. Sci. Technol. 41, 400–405 (2007)

  6. Costa, M.L., Kern, D.C.: Geochemical signatures of tropical soils with archaeological black earth in the Amazon. Brazil. J. Geochem. Explor. 66, 369–385 (1999)

    Article  Google Scholar 

  7. Sombroek, W., Ruivo, M.L., Fearnside, P.M., Glaser, B., Lehmann, J.: Amazonian Dark Earths as carbon stores and sinks. In: Lehmann, J.K., Kern, D.C., Glaser, B., Woods, W.I. (eds.) Amazonian Dark Earths: Origin, Properties, Management, pp. 125–139. Kluwer Academic Publishers, Dordrecht (2003)

  8. Lehmann, J., Gaunt, J., Rondon, M.: Biochar sequestration in terresterial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11, 403–427 (2006)

    Article  Google Scholar 

  9. Yin Chan, K., Xu, Z.: Biochar: nutrient properties and their enhancement. In: Lehmann, J., Joseph, S., (eds.) Bio-Char for Environmental Management: Science and Technology, pp. 67–84. Earthscan Publishers Ltd. (2009)

  10. Lehmann, J., Joseph, S.: Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology, pp. 1–12. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

  11. Sohi, S., Lopez-Capel, E., Krull, E., Bol, R.: Biochar, climate change and soil: a review to guide future research, in CSIRO Land and Water Science Report series ISSN: 1834-6618. (2009)

  12. Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45, 651–671 (2004)

    Article  Google Scholar 

  13. Gaunt, J., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42, 4152–4158 (2008)

    Article  Google Scholar 

  14. Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18, 590–598 (2004)

    Article  Google Scholar 

  15. Maschio, G., Koufopanos, C., Lucchesi, A.: Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42, 219–231 (1992)

    Article  Google Scholar 

  16. Demirbas, A.: Producing bio-oil from olive cake by fast pyrolysis. Energy Sources 30(Part A), 38–44 (2008)

    Google Scholar 

  17. Demirbas, A.: Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 72, 243–248 (2004)

    Article  Google Scholar 

  18. Brosse, N., Sannigrahi, P., Ragauskas, A.: Pretreatment of Miscanthus × giganteus using the ethanol organosolv process for ethanol production. Ind. Eng. Chem. Res. 48, 8328–8334 (2009)

    Article  Google Scholar 

  19. Novotny, E.H., Hayes, M.H.B., de Azevedo, E.R., Bonagamba, T.J.: Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance. Naturwissenschaften 93, 447–450 (2006)

    Article  Google Scholar 

  20. Smernik, R.J., Kookana, R.S., Skjemstad, J.O.: NMR Characterization of 13C-benzene sorbed to natural and prepared charcoals. Environ. Sci. Technol. 40, 1764–1769 (2006)

    Article  Google Scholar 

  21. Brundrett, M.L.: Clearing and staining mycorrhizal roots. In: Brundrett, M.L., Melville, L., Peterson, L. (eds.) Practical methods in mycorrhizal research, pp. 51–61. Mycologue Publications, Waterloo, ON, Canada. (1994)

  22. Demirbas, A.: Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energy Conserv. Manage. 42, 1229–1238 (2001)

    Google Scholar 

  23. Demirbas, A.: Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources 28(Part A), 413–422 (2006)

    Article  Google Scholar 

  24. Glaser, B., Lehmann, J., Zech, W.: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol. Fertil. Soils 35, 219–230 (2002)

    Article  Google Scholar 

  25. Day, D., Evans, R.J., Lee, J.W., Reicosky, D.: Economical CO2, SO x , and NO x capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30, 2558–2579 (2005)

    Article  Google Scholar 

  26. Downie, A., Crosky, A., Munroe, P.: Physical properties of biochar. In: Lehmann, L., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology, pp. 13–32. Earthscan Publishers Ltd, London (2009)

  27. Sohi, S., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. Adv. Agron. 105, 47–79 (2010)

    Article  Google Scholar 

  28. Warnock, D.D., Lehmann, J., Kuyper, T.W., Rillig. M.C.: Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20 (2007)

    Google Scholar 

  29. Zhu, Y.G., Miller, R.M.: Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci. 8(9), 407–409 (2003)

    Article  Google Scholar 

  30. Wright, S.F., Upadhyaya, A.: A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107 (1998)

    Google Scholar 

  31. Johnston, A.E.: Soil fertility and soil organic matter. In: Wilson, W.S. (ed.) Advances in Soil Organic Matter Research: The Impact on Agriculture and the Environment, pp. 299–314. The Royal Society of Chemistry, Cambridge (1991)

    Google Scholar 

  32. Schlesinger, W.H.: An overview of the global carbon cycle. In: Lal, R., Kimble, J., Levine, E., Stewart, B.A. (eds.) Soils and Global Change, pp. 9–25. Lewis Publishers, Boca Ratton, Florida (1995)

    Google Scholar 

  33. Novotny, E.H., Hayes, M.H.B., Madari, B.E., Bonagamba, T.J., de Azevedo, E.R., de Souza, A.A., Song, G., Nogueira, C.M., Mangrich, A.S.: Lessons from the Terra Preta de Índios of the Amazon Region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 20, 1003–1010 (2009)

    Article  Google Scholar 

  34. Lehmann, J., Czimczik, C., Laird, D.A., Sohi, Saran.: Stability of biochar in the soil. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

  35. Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P., Krull, E.: Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008)

    Article  Google Scholar 

  36. Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D.: Stability of black carbon in soils across a climate gradient. Geophys. Res. 113 (2008)

  37. Gaunt, J., Cowie, A.: Biochar greenhouse gas accounting and emission trading. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology, pp. 317–340. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

  38. Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007)

    Article  Google Scholar 

  39. Hayes, D.J., Hayes, M.H.B.: The role that lignocellulosic feedstocks and various biorefining technologies can play in meeting Ireland’s biofuel targets. Biofuels Bioprod. Bioref. (2009)

  40. Downie, A., Klatt, P., Downie, R., Munroe, P.: Slow pyrolysis: australian demonstration plant successful on multi feedstocks. Bioenergy 2007 Conference. Finland (2007)

  41. Bridgwater, A.V.: Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91, 87–102 (2003)

    Article  Google Scholar 

  42. Marris, E.: Black is the new green. Nature 442, 624–626 (2006)

    Article  Google Scholar 

  43. Hayes, D.J., Fitzpatrick, S.W., Hayes, M.H.B., Ross, J.R.H.: The Biofine process: production of levulinic acid, furfural and formic acid from lignocellulosic feedstocks. In: Kamm, B., Gruber, V.R., Kamm, M. (eds.) Biorefineries, Volume 1, Principles and Fundamentals, pp. 139–164. Wiley-VCH (2005)

  44. Van Zwieten, L., Bhupinderpal, S., Joseph, S., Kimber, S., Cowie, Yin Chan, K.: Bio-char and emissions of non-CO2 greenhouse gases from soil. In: Lehmann, J., Joseph, S. (eds.) Bio-char for Environmental Management: Science and Technology, pp. 227–249. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

  45. Rondon, M., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J., Amezquita, E.: Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through biochar amendments to unfertile tropical soils. In: 18th World congress of Soil Science. Philadelphia, USA (2006)

  46. Rondon, M., Ramirez, J.A., Lehmann, J: Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration. Baltimore, USA (2005)

  47. Yanai, Y.T.K., Okazaki, M.: Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term incubation experiments. Soil Sci. Plant Nutr. 53, 181–188 (2007)

    Article  Google Scholar 

  48. Steiner, C., Wenceslau, C., Teixeira, G., Lehmann, J., Nehls, T., Vasconcelos de Macêdo, J.L., Blum, W.E.H., Zech, W.: Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291, 275–290 (2007)

    Article  Google Scholar 

  49. Tenenbaum, D.: Biochar: Carbon Mitigation from the Ground Up. Environmental Health Perspectives, vol. 117, (2009)

  50. Lehmann, J., Joseph, S.: Biochar systems. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology, pp. 147–181. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

  51. EPA: Common Reporting Formats. Available at: http://coe.epa.ie/ghg/crfdownloads.jsp (2009)

  52. CSO: Fertiliser price by type of fertiliser and month (2009)

  53. Lehmann, J., Rondon, M.: Bio-char soil management on highly-weathered soils in the humid tropics. In: Uphoff, N. (ed.) Biological Approaches to Sustainable Soil Systems. CRC Press, Boca Raton (2005)

    Google Scholar 

  54. Berglund, L.M., DeLuca, T.H., Zackrisson, O.: Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem. 36, 2067–2073 (2004)

    Article  Google Scholar 

  55. Cordell, D., Drangert, J.O., White, S.: The story of phosphorus: global food security and food for thought. Global Environ. Change 19, 292–305 (2009)

    Article  Google Scholar 

  56. DeLuca, T.H., MacKenzie, M.D., Gundale, M.J.: Biochar effects on soil nutrient transformations. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management (2009)

  57. Demirbas, A., Arslan, G., Pehlivan, E.: Recent studies on activated carbons and fly ashes from Turkish resources. Energy Sources Part A 28, 627–638 (2006)

    Article  Google Scholar 

  58. Bridgwater, A.V., Meier, D., Radlein, D.: An overview of fast pyrolysis of biomass. Org. Geochem. 30(12), 1479–1493 (1999)

    Article  Google Scholar 

  59. Demirbas, A.: Determination of calorific values of bio-chars and pyro-oils from pyrolysis of beech trunkbarks. J. Anal. Appl. Pyrol. 72, 215–219 (2004)

    Article  Google Scholar 

  60. Matteson, G.C., Jenkins, B.M.: Food and processing residues in California: resource assessment and potential for power generation. Bioresour. Technol. 98, 3098–3105 (2007)

    Article  Google Scholar 

  61. Müller, A., Schmidhuber, J., Hoogeveen, J., Steduto, P.: Some insights in the effect of growing bio-energy demand on global food security and natural resources. Water Policy 10, 83–94 (2008)

    Article  Google Scholar 

  62. Joseph, S., Peacocke, C., Lehmann, J., Munroe, P.: Developing a biochar classification and test methods. In: Lehmann, J., Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. Earthscan Publishers Ltd, London (2009)

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support of Science Foundation Ireland under Grant Number 06/CP/E007, and Geof 833, Enterprise Ireland under “Competence Centre for Biorefining and Bioenergy” Grant Number CC/2009/1305C, and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no: 227248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. P. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwapinski, W., Byrne, C.M.P., Kryachko, E. et al. Biochar from Biomass and Waste. Waste Biomass Valor 1, 177–189 (2010). https://doi.org/10.1007/s12649-010-9024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9024-8

Keywords

Navigation