Skip to main content

Advertisement

Log in

Bioremediation of atrazine: recent advances and promises

  • SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Atrazine is one of the most widely used herbicides to control broadleaf and grassy weeds for many crops in the world. Its contamination has become a growing public concern because atrazine is the most commonly detected pesticide in soil and groundwater. Studies have indicated that atrazine may cause damages to the central nervous system, endocrine system, and immune system. The aim of this review was to update our understanding of recent development of atrazine bioremediation for its improved application.

Materials and methods

Bioremediation, an economical and eco-friendly approach, has emerged as the most advantageous technique for cleaning up atrazine contamination in soil and water. A large number of atrazine-degrading bacteria and fungi have been isolated. The genetic pathways for atrazine remediation/detoxification have been well characterized in bacteria, fungi, and plants.

Results and discussion

To enhance bioremediation, transgenic microbes and plants expressing atrazine-degrading enzymes have been developed. Co-application of transgenic microbes and transgenic plants has been proposed to get synergistic effect for bioremediation of atrazine.

Conclusions

In summary, although effective bioremediation methods of atrazine removal have been successfully employed, it should be noted that there has been a series of disappointing failures, along with tremendous successes in the laboratory. Overall, future research should be geared toward narrowing the gaps between bioremediation in laboratory and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93:113–120

    Article  CAS  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  Google Scholar 

  • Balci B, Oturan N, Cherrier R, Oturan MA (2009) Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study. Water Res 43:1924–1934

    Article  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63:389–394

    Article  CAS  Google Scholar 

  • Bode M, Stobe P, Thiede B, Schuphan I, Schmidt B (2004) Biotransformation of atrazine in transgenic tobacco cell culture expressing human P450. Pest Manag Sci 60:49–58

    Article  CAS  Google Scholar 

  • Bohn T, Cocco E, Gourdol L, Guignard C, Hoffmann L (2011) Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine disrupting pesticides. Food Addit Contam 28:1041–1054

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pest Sci 13:495–504

    Article  CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J Environ Eng 122:958–963

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Burtnick MN, Downey JS, Brett PJ, Boylan JA, Frye JG, Hoover TR, Gherardini FC (2007) Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65:277–293

    Article  CAS  Google Scholar 

  • Chan KH, Chu W (2003) Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere 51:305–311

    Article  CAS  Google Scholar 

  • Chan CY, Tao S, Dawson R, Wong PK (2004) Treatment of atrazine by integrating photocatalytic and biological processes. Environ Pollut 131:45–54

    Article  CAS  Google Scholar 

  • Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Davis DE, Gramlich JV, Funderburk HH (1965) Atrazine absorption and degradation by corn, cotton, and soybeans. Weeds 13:252–255

    Article  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  Google Scholar 

  • Dehghani M, Nasseri S, Amin S, Naddafee K, Taghavi M, Yunesian M, Maleky N (2007) Isolation and identification of atrazine-degrading bacteria from corn field soil in Fars province of Iran. Pak J Biol Sci 10:84–89

    Article  CAS  Google Scholar 

  • Devers M, Azhari NE, Kolic NU, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273:78–86

    Article  CAS  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2, 4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647

    CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian P450 2E1. PNAS 97:6287–6291

    Article  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. PNAS 104:16816–16821

    Article  CAS  Google Scholar 

  • Du J, Zhang Y, Ma Y, Li J, Zhang Q (2011) Simulation study of atrazine-contaminated soil biodegradation by strain W16. Procedia Environ Sci 11:1488–1492

    Article  CAS  Google Scholar 

  • El Sebai T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65:1249–1255

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  Google Scholar 

  • Flocco CG, Lindblom SD, Elizabeth AH, Smits P (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez V, Govantes F, Shaw LJ, Burns RG, Santero E (2003) Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP. Appl Environ Microbiol 69:6987–6993

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez V, Govantes F, Porrua O, Santero E (2005) Regulation of the Pseudomonas sp. strain ADP cyanuric acid degradation operon. J Bacteriol 187:155–167

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez V, Jimenez-Fernandez A, Hervas AB, Canosa I, Santero E, Govantes F (2009) Distinct roles for NtrC and GlnK in nitrogen regulation of the Pseudomonas sp. strain ADP cyanuric acid utilization operon. FEMS Microbiol Lett 300:222–229

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Getenga Z, Dorfler U, Iwobi A, Schmid M, Schroll R (2009) Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya. Chemosphere 77:534–539

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Govantes F, Porrua O, Garcia-Gonzalez V, Santero E (2009) Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb Biotechnol 2:178–185

    Article  CAS  Google Scholar 

  • Govantes F, Garcia-Gonzalez V, Porrua O, Platero AI, Jimenez-Fernandez A, Santero E (2010) Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiol Lett 310:1–8

    Article  CAS  Google Scholar 

  • Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43:459–462

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Henderson KL, Belden JB, Coats JR (2007) Fate of atrazine in a grass phytoremediation system. Environ Toxicol Chem 26:1836–1842

    Article  CAS  Google Scholar 

  • Huang X, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  Google Scholar 

  • Huang H, Zhang S, Shan X, Chen B, Zhu Y, Bell JNB (2007) Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environ Pollut 146:452–457

    Article  CAS  Google Scholar 

  • Huang H, Zhang S, Wu N, Luo L, Christie P (2009) Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol Biochem 41:726–734

    Article  CAS  Google Scholar 

  • Ibrahim SI, Lateef MFA, Khalifa HMS, Monem AEA (2013) Phytoremediation of atrazine-contaminated soil using Zea mays (maize). Ann Agric Sci 58:69–75

    Google Scholar 

  • Inui H, Shiota N, Motoi Y, Ido Y, Inoue T, Kodama T, Ohkawa Y, Ohkawa H (2001) Metabolism of herbicides and other chemicals in human cytochrome P450 species and in transgenic potato plant co-expressing human CYP1A1, CYP2B6 and CYP2C19. Nippon Noyaku Gakkaishi 26:28–40

    CAS  Google Scholar 

  • Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicide in soil. Appl Environ Soil Sci 2011:1–10

    Article  Google Scholar 

  • Kaufman DD, Blake J (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 53:8557–8564

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Phytoremediation of herbicide atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6 and CYP2C19. J Agric Food Chem 54:2985–2991

    Article  CAS  Google Scholar 

  • Khromonygina VV, Saltykova AI, Vasil’chenko LG, Kozlov YP, Rabinovich ML (2004) Degradation of the herbicide atrazine by the soil mycelial fungus INBI 2-26(−), a producer of cellobiose dehydrogenase. Appl Environ Microbiol 40:285–290

    CAS  Google Scholar 

  • Lerch RN, Donald WM, Li YX, Alberts EE (1995) Hydroxylated atrazine degradation products in a small Missouri stream. Environ Sci Technol 29:2759–2768

    Article  CAS  Google Scholar 

  • Li QY, Li Y, Zhu XK, Cai BL (2008) Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci 20:1226–1230

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification. J Environ Qual 37:196–206

    Article  CAS  Google Scholar 

  • Liu L, Jiang C, Liu X, Wu J, Han J, Liu S (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473

    Article  CAS  Google Scholar 

  • Liu CG, Yang FS, Lu XZ, Huang F, Liu LP, Yang CP (2010) Isolation, identification and soil remediation of atrazine-degrading strain T3AB1. Acta Microbiological Sinca 50:1642–1650

  • Lu YC, Yang SN, Zhang JJ, Zhang JJ, Tan LR, Yang H (2013) A collection of glycosyltransferases from rice (Oryza sativa) exposed to atrazine. Gene 531:243–252

    Article  CAS  Google Scholar 

  • Mahia J, Martin A, Carballas T, Diaz-Ravina M (2007) Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems. Sci Total Environ 378:187–194

    Article  CAS  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzguebel JP (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215

    Article  CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JW (2000) Ectomycorrhizas—extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Merini LJ, Bobillo C, Cuadrado V, Corach D, Giulietti AM (2009) Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved. Environ Pollut 157:3059–3063

    Article  CAS  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  Google Scholar 

  • Mulbry WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Ecol 206:75–79

    Article  CAS  Google Scholar 

  • Murphy IJ, Coats JR (2011) The capacity of switchgrass (Panicum virgatum) to degrade atrazine in a phytoremediation setting. Environ Toxicol Chem 30:715–722

    Article  CAS  Google Scholar 

  • Nedumpara MJ, Moorman TB, Jayachandran K (1999) Effect of a vesicular-arbuscular mycorrhizal fungus (Glomus epigaeus) on herbicide uptake by roots. Biol Fertil Soils 30:75–82

    Article  CAS  Google Scholar 

  • Owsianiak M, Dechesne A, Binning PJ, Chambon JC, Sorensen SR, Smets BF (2010) Evaluation of bioaugmentation with entrapped degrading cells as a soil remediation technology. Environ Sci Technol 44:7622–7627

    Article  CAS  Google Scholar 

  • Piutti S, Semon E, Landry D, Hartmann A, Dousset S, Lichtfouse E, Topp E, Soulas G, Laurent FM (2003) Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. FEMS Microbiol Lett 221:111–117

    Article  CAS  Google Scholar 

  • Porrua O, Garcia-Jaramillo M, Santero E, Govantes F (2007) The LysR-type regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning. Mol Microbiol 66:410–427

    Article  CAS  Google Scholar 

  • Porrua O, Garcia-Gonzalez V, Santero E, Shingler V, Govantes F (2009) Activation and repression of a σN-dependent promoter naturally lacking upstream activation sequences. Mol Microbiol 73:419–433

    Article  CAS  Google Scholar 

  • Porrua O, Platero AI, Santero E, Solar GD, Govantes F (2010) Complex interplay between the LysR-type regulator AtzR and its binding site mediates atzDEF activation in response to two distinct signals. Mol Microbiol 76:331–347

    Article  CAS  Google Scholar 

  • Putwain PD (2005) The resistance of insecticide and herbicide on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  • Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  CAS  Google Scholar 

  • Sajjaphan K, Heepngoen P, Sadowsky MJ, Boonkerd N (2010) Arthrobacter sp. Strain KU001 isolated from a Thai soil degrades atrazine in the presence of inorganic nitrogen sources. J Microbiol Biotechnol 20:602–608

    CAS  Google Scholar 

  • Seffernick JL, Johnson G, Sadowsky MJ, Wackett LP (2000) Substrate specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. Appl Environ Microbiol 66:4247–4252

    Article  CAS  Google Scholar 

  • Seffernick JL, Aleem A, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP (2007) Hydroxyatrazine N-ethylaminohydrolase (AtzB): an amidohydrolase superfamily enzyme catalyzing deamination and dechlorination. J Bacteriol 189:6989–6997

    Article  CAS  Google Scholar 

  • Shapir N, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP (2002) Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J Bacteriol 184:5376–5384

    Article  CAS  Google Scholar 

  • Shapir N, Rosendahl C, Johnson G, Andreina M, Sadowsky MJ, Wackett LP (2005) Substrate specificity and colorimetric assay for recombinant TrzN derived from Arthrobacter aurescens TC1. Appl Environ Microbiol 71:2214–2220

    Article  CAS  Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy JM, Limpiyakorn T, Khan E (2009a) Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J Appl Microbiol 106:986–992

    Article  CAS  Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy JM, Casey FXM, Khan E (2009b) Atrazine removal in agricultural infiltrate by bioaugmented polyvinyl alcohol immobilized and free Agrobacterium radiobacter J14a: a sand column study. Chemosphere 74:308–313

    Article  Google Scholar 

  • Souza ML, Wackett LP, Boundy-Mills KL, Mandelbaum RT, Sadowsky MJ (1995) Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl Environ Microbiol 61:3373–3378

    Google Scholar 

  • Ta N, Hong J, Liu T, Sun C (2006) Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. J Hazard Mater 138:187–194

    Article  Google Scholar 

  • Tappe W, Groeneweg J, Jantsch B (2002) Diffuse atrazine pollution in German aquifers. Biodegradation 13:3–10

    Article  CAS  Google Scholar 

  • Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000) Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils. Appl Environ Microbiol 66:3134–3141

    Article  CAS  Google Scholar 

  • Vaishampayan PA, Kanekar PP, Dhakephalkar PK (2007) Isolation and characterization of Arthrobacter sp. strain MCM B-436, an strazine-degrading bacterium, from rhizospheric soil. Int Biodeterior Biodegrad 60:273–278

  • Wang QF, Xie SG (2012) Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int Biodeterior Biodegrad 71:61–66

  • Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotechnol J 3:475–486

    Article  CAS  Google Scholar 

  • Wang Q, Zhang W, Li C, Xiao B (2012) Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Sci Technol 66:1282–1288

    Article  CAS  Google Scholar 

  • Wang Q, Xie S, Hu R (2013) Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil. Int Biodeterior Biodegrad 77:63–67

    Article  CAS  Google Scholar 

  • Willey N (2007) Phytoremediation: methods and reviews. Humana, UK

    Book  Google Scholar 

  • Yamada T, Ishige T, Shiota N, Inui H, Ohkawa H, Ohkawa Y (2002) Enhancement of metabolizing herbicides in young tubers of transgenic potato plants with the rat CYP1A1 gene. Theor Appl Genet 105:515–520

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang Z, Cao B, Miao Hu, Wang ZG, Dong XN (2011) Metabolic ability and gene characteristics of Arthrobacter sp. strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. Int Biodeterior Biodegrad 65:1140–1144

  • Zhang Y, Meng D, Wang Z, Guo H, Wang Y, Wang X, Dong X (2012) Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. J Hazard Mater 229–230:434–438

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 31270535 and No. 31300355) and the Key program of Heilongjiang Province Natural Science Foundation (No. ZD201206)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Song.

Additional information

Responsible editor: Jaco Vangronsveld

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Song, F. Bioremediation of atrazine: recent advances and promises. J Soils Sediments 14, 1727–1737 (2014). https://doi.org/10.1007/s11368-014-0921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0921-5

Keywords

Navigation