Skip to main content
Log in

Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants

  • SOILS, SEC 4 • ECOTOXICOLOGY • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This paper addresses the application of bioproducts produced by plants (locust bean, guar, and mesquite seed gums) to enhance remediation processes of different nature: soil washing and biodegradation methodologies.

Materials and methods

These natural gums were tested at laboratory scale to remove total petroleum hydrocarbons-diesel fraction (TPH-diesel) from oil-contaminated volcanic soils sampled from a polluted site in an agricultural area of western Mexico. TPH-diesel removal by natural gums was compared to common synthetic surfactants.

Results and discussion

There is a strong evidence of contamination caused by the presence of TPH-diesel at a concentration of 32,100 mg/kg, which is above the legal limit of 1,200 mg/kg for agricultural soils in Mexico. Regarding the surfactant soil washing experiments, ionic surfactants showed removal rates above the control test of about 78.51 % (Maranil LAB), 71.27 % (Texapon 40), 60.13 % (SDS), and 48.19 % (Surfacpol G). In contrast, some nonionic surfactants showed removal rates below soil-washing background rate (40 %). On the other hand, natural gums showed interesting and promising results. Guar gum and locust bean gum showed efficiencies of 54.38 % and 53.46 %, respectively. Biodegradation experiments confirmed the effectiveness of natural gums as biodegradation enhancers in diesel-contaminated soils. Specifically, guar gum showed an excellent performance. An 82 % TPH-diesel removal rate was achieved for a very low gum concentration (2 ppm). In this particular context, reported surfactant concentrations to assist biodegradation are, in general, higher.

Conclusions

This work demonstrated the applicability of natural gums as soil remediation enhancers in diesel-contaminated systems. Particularly, guar gum might represent a cost-effective alternative for biodegradation enhancement processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Althoff K, Mundt M, Eisentraeger A, Dott W, Hollender J (2001) Microcosms-experiments to assess the potential for natural attenuation of contaminated groundwater. Water Res 35(3):720–728

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials, ASTM, (2000) Standard Practice for Soil Exploration and Sampling by Auger Borings. ASTM D1452-09

  • Arrar J, Chekir N, Bentahar F (2007) Treatment of diesel fuel contaminated soil in jet-fluidized bed. Biochem Eng J 37:131–138

    Article  CAS  Google Scholar 

  • Blake GR, Hartage KH (1986) Bulk Density. In: Klute A (ed) Methods of soil analysis. Part I. Physical and mineralogical methods, Agronomy 9, 2nd edn. American Society of Agronomy, Madison, pp 363–375

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available form of phosphorus in soil. Soil Sci 59:360–361

    Article  Google Scholar 

  • Calabrase EJ, Kostecki PT (1991) Hydrocarbon contaminated soils. Lewis, Boca Raton

    Google Scholar 

  • Chaplin M (2003) Guar gum. www.sbu.ac.ik/water/hygua.html

  • Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522

    Article  CAS  Google Scholar 

  • Dakia PA, Blecker C, Robert C, Wathelet B, Paquot M (2008) Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids 22:807–818

    Article  CAS  Google Scholar 

  • Dal-Heui L, Ho-Wan C, Chul K (2008) Mixing effect of NaCl and surfactant on the remediation of TCB contaminated soil. Geosci J 12(1):63–68

    Article  Google Scholar 

  • Danielson RE, Sutherland PL (1986) Porosity. In: Klute A (ed) Methods of soil analysis. Part I. Physical and mineralogical methods, Agronomy 9, 2nd edn. American Society of Agronomy, Madison, pp 443–461

    Google Scholar 

  • Desphande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH (1999) Surfactant selection for enhancing ex situ soil washing. Water Res 33(2):351–360

    Article  Google Scholar 

  • Fahnestock FM (1998) Biopile design: operation and maintenance handbook for treating hydrocarbon-contaminated soils. Battelle, EUA

    Google Scholar 

  • Fernández Linares LC, Rojas Avelizapa NG, Roldán Carrillo TG, Ramírez Islas ME, Zegarra Martínez HG, Uribe Hernández R, RJ RÁ, Flores Hernández D, Arce Ortega JM (2006) Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo, Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, México. ISBN 968-489-039-7

    Google Scholar 

  • Fernández-Pérez V, Luque de Castro MD (2000) Micelle formation for improvement of continuous subcritical water extraction of polycyclic aromatic hydrocarbons in soil prior to high-performance liquid chromatography-fluorescence detection. J Chromatogr A 902(2):357–367

    Article  Google Scholar 

  • Fetter CW (1999) Contaminant hydrogeology. Prentice-Hall, New Jersey

    Google Scholar 

  • Goi A, Trapido M, Kulik N, Palmorth MRT, Tuhnkanen T (2006) Ozonation. Sci Eng 28(1):37–46

    CAS  Google Scholar 

  • Guimaraes-Martins V, Juliano-Kalil S, Vieria-Costa JA (2009) In situ bioremediation using biosurfactant produced by solid state fermentation. World J Microbiol Biotechnol 25:843–851

    Article  Google Scholar 

  • Hernandez-Espriú A (2010) Estrategia integral de remediación en un sitio contaminado por hidrocarburos: simulación de los procesos de descontaminación de suelos y acuíferos con modelación matemática y análisis en laboratorio. PhD thesis, Universidad Complutense de Madrid

  • Hernández-Espriú A, Martínez-Santos P, Sánchez-León E, Marín LE (2012) Free-product plume distribution and recovery modeling prediction in a diesel-contaminated volcanic aquifer. Phys Chem Earth 37–39:43–51

    Google Scholar 

  • Iturbe R, Flores C, Chávez C, Bautista G, Torres LG (2004) Remediation of contaminated soil using soil washing and biopile methodology at a field level. J Soils Sediments 4(2):115–122

    Article  CAS  Google Scholar 

  • Iturbe R, Flores C, Castro A, Torres LG (2007) Sub-soil contamination due to oil spills in six oil-pipeline pumping stations in northern Mexico. Chemosphere 68:893–906

    Article  CAS  Google Scholar 

  • Juárez-Badillo E, Rico A (1973) Mecánica de Suelos, Tomo 1: Fundamentos de la mecánica de suelos, Limusa

  • Khalladi R, Benhabiles O, Bentahar F, Moulai-Mostefa N (2009) Surfactant remediation of diesel fuel polluted soil. J Hazard Mater 164:1179–1184

    Article  CAS  Google Scholar 

  • Klute A (1986) Water retention: laboratory methods. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison, pp 635–662

    Google Scholar 

  • Knop A, Cruz RC, Heineck KS, Consoli NC (2005) Solidification/stabilization of a residual soil contaminated by diesel oil. Proceedings of the International Conference on Deep Mixing Best Practice and Recent Advances 1.2:363–367

  • Lai C, Huanga Y, Wei Y, Chang J (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  CAS  Google Scholar 

  • Liu PWG, Whang LM, Yang MC, Cheng SS (2008) Biodegradation of diesel-contaminated soil: a soil column study. J Chin Inst Chem Eng 39(5):419–428

    Article  CAS  Google Scholar 

  • López J, Iturbe R, Torres LG (2004) Washing of soil contaminated with PAH’s and heavy petroleum fractions using two anionic and one ionic surfactant: effect of salt addition. J Environ Sci Health, Part A: Toxic/Hazard Subst Environ Eng 39(9):2293–2306

    Article  Google Scholar 

  • Mao L, Yue Q (2010) Remediation of diesel-contaminated soil by bioventing and composting technology. International Conference on Challenges in Environmental Science and Computer Engineering

  • Mariano AP, Geraldes-Kataoka APA, de Angelis DF (2007) Laboratory study on the bioremediation of diesel oil contaminated soil from a petrol station. Braz J Microbiol 38:346–353

    Article  Google Scholar 

  • McMillen S, Rhodes I, Nakles DV, Sweeney RE (2001) Application of the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) methodology to crude oils and gas condensates. In: McMillen SJ, Magaw RI, Carovillano RL (eds) Risk-based decision-making for assessing petroleum impacts at exploration and production sites. US Department of Energy, Washington DC

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Orozco-Villafuerte J, Cruz-Sosa F, Ponce-Alquicira E, Vernon-Carter EJ (2003) Mesquite gum: fractionation and characterization of the gum exuded from Prosopis laevigata obtained from plant tissue culture and from wild trees. Carbohydr Polym 54:327–333

    Article  CAS  Google Scholar 

  • Page M, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng 128(3):208–216

    Article  CAS  Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Román-Guerrero A, Orozco-Villafuerte J, Pérez-Orozco JP, Cruz-Sosa F, Jiménez-Alvarado R, Vernon-Carter EJ (2009) Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel-oil. Food Hydrocolloids 23:708–713

    Article  Google Scholar 

  • Rossiter DG (2011) A minimal introduction to geostatistics with R/gstat. University of Twente, Faculty of Geo-Information Science & Earth Observation (ITC)

  • SEMARNAT (2000) Norma Oficial Mexicana NOM-021-SEMARNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis

  • SEMARNAT-SSA (2003) Norma Oficial Mexicana NOM-138-SEMARNAT/SSA1-2003, Que establece los límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación

  • SEMARNAT-SSA (2004) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, niquel, plata, plomo, selenio, talio y/o vanadio

  • Seok-Whan K, Young-Bum K, Jae-Dong S, Eun-Ki K (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant. Sophorolipid Appl Biochem Biotechnol 160(3):780–790

    Article  Google Scholar 

  • Sharma A, Rehman MB (2009) Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium. Indian J Exp Biol 47:766–769

    CAS  Google Scholar 

  • Shin KH, Kim KW, Seagren EA (2004) Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Appl Microbiol Biotechnol 65:336–343

    Article  CAS  Google Scholar 

  • Sivaraman C, Anasuya G, Srikanth M (2010) Biodegradation of hydrocarbons in the presence of cyclodextrins. World J Microbiol Biotechnol 26:227–232

    Article  CAS  Google Scholar 

  • Soeder CJ, Papaderos A, Kleespies M, Kneifel H, Haegel FH, Webb L (1996) Influence of phytogenic surfactants (quillaya saponins and soya lecithin) on bio-elimination of phenanthrene and fluoranthene by three bacteria. Appl Microbiol Biotechnol 44:654–659

    Article  CAS  Google Scholar 

  • Suthersan S (2002) Natural and enhanced remediation systems (Geraghty and Miller Environmental Science and Engineering Series). CRC, Boca Raton

  • Tiehm A, Schulze S (2003) Intrinsic aromatic hydrocarbon biodegradation for groundwater remediation. Oil Gas Sci Technol 58(4):449–462

    Article  CAS  Google Scholar 

  • Torres LG, Orantes JL, Iturbe R (2003) Critical micellar concentrations for three surfactants and their diesel-removal efficiencies in petroleum-contaminated soils. Environ Geosci 10(1):28–36

    Article  Google Scholar 

  • Torres LG, Rojas N, Iturbe R (2004) Use of two-surfactants mixtures to attain specific HLB values for assisted TPH-diesel biodegradation. J Environ Sci 16(6):950–956

    CAS  Google Scholar 

  • Torres LG, Rojas N, Bautista G, Iturbe R (2005) Effect of temperature, and surfactant’s HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochem 40:3296–3302

    Article  CAS  Google Scholar 

  • Torres LG, Zavala P, Beltrán M, Vaca M, Iturbe R (2007) Combination of natural gums and synthetic surfactants for washing of a soil highly contaminated with crude. Environ Geosci 14(1):49–58

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (1995) How to evaluate alternative cleanup technologies for underground storage tank sites. A guide for corrective action plan reviewers. EPA 510-B-95-007. Washington, DC

  • U.S. Environmental Protection Agency (1996) Soxhlet extraction. EPA 3540C

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150

    Article  CAS  Google Scholar 

  • Villa RD, Trovó AG, Pupo Nogueira RF (2010) Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation. J Hazard Mater 174:770–775

    Article  CAS  Google Scholar 

  • Vreysen S, Maes A (2005) Remediation of a diesel contaminated, sandy-loam soil using low concentrated surfactant solutions. J Soils Sediments 4:240–244

    Article  Google Scholar 

  • Walkley A, Black A (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  • Wen-Bin X, Xin L, Hui G, Bao-Rong H, Hui-Zhi Z, Yun-Guo L, Guang-Ming Z, Ting F (2009) Influence factors analysis of removing heavy metals from multiple metal-contaminated soils with different extractants. J Cent South Univ Technol 16:0108–0111

    Article  Google Scholar 

  • Whang L, Liu PWG, Ma C, Cheng S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

  • Xu P, Achari G, Mahmoud M, Joshi RC (2006) Application of Fenton’s reagent to remediate diesel contaminated soils. Pract Period Hazard Toxic Radioact Waste Manage 10(1):19

    Article  Google Scholar 

  • Zhang M, Zhu L (2010) Effect of SDBS–Tween 80 mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil–water system. J Soils Sediments 10:1123–1130

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002) Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Res 36:2667–2672

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2007) Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil–surfactant PAHs system. Environ Pollut 147:66–73

    Article  CAS  Google Scholar 

  • Zhou W, Zhu L (2008) Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environ Pollut 152:99–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Hernández-Espriú.

Additional information

Responsible editor: Qixing Zhou

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Espriú, A., Sánchez-León, E., Martínez-Santos, P. et al. Remediation of a diesel-contaminated soil from a pipeline accidental spill: enhanced biodegradation and soil washing processes using natural gums and surfactants. J Soils Sediments 13, 152–165 (2013). https://doi.org/10.1007/s11368-012-0599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-012-0599-5

Keywords

Navigation