Skip to main content
Log in

Enhanced Biodegradation of Hydrocarbons in Soil by Microbial Biosurfactant, Sophorolipid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aronstein, B. N., & Alexander, M. (1992). Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of aquifer sands and slurries. Environmental Toxicology and Chemistry, 11, 1227–1233. doi:10.1897/1552-8618(1992)11[1227:SALCSB]2.0.CO;2.

    Article  CAS  Google Scholar 

  2. Liu, Z., Jacobson, A. M., & Luthy, R. G. (1995). Biodegradation of naphthalene in aqueous nonionic surfactant systems. Applied and Environmental Microbiology, 61, 145–151.

    CAS  Google Scholar 

  3. Macnaughton, S. J., Swannell, R., Daniel, F., & Bristow, L. (2003). Biodegradation of dispersed forties crude and Alaskan north slope oils in microcosms under simulated marine conditions. Spill Science & Technology Bulletin, 8, 179–186. doi:10.1016/S1353-2561(03)00020-3.

    Article  CAS  Google Scholar 

  4. Okolo, J. C., Amadi, E. N., & Odu, C. T. I. (2005). Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam. Appl Eco Environ Res, 3, 47–53.

    Google Scholar 

  5. Aronsteln, B. N., Calvillo, Y. M., & Alexander, M. (1991). Effect of surfactants at low concentration on desorption and biodegradation of sorbed aromatic compounds in soil. Environmental Science & Technology, 25, 1728–1731. doi:10.1021/es00022a008.

    Article  Google Scholar 

  6. Efroymson, R. A., & Alexander, M. (1991). Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Applied and Environmental Microbiology, 57, 1441–1447.

    CAS  Google Scholar 

  7. Kim, I. S., Park, J.-S., & Kim, K.-W. (2001). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16, 1419–1428. doi:10.1016/S0883-2927(01)00043-9.

    Article  CAS  Google Scholar 

  8. Quintero, J. C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2005). Effect of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80, 1005–1015. doi:10.1002/jctb.1277.

    Article  CAS  Google Scholar 

  9. Foght, J. M., Gutnick, D. L., & Westlake, D. W. S. (1989). Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Applied and Environmental Microbiology, 55, 36–42.

    CAS  Google Scholar 

  10. Inakollu, S., Hung, H.-C., & Shreve, G. S. (2004). Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environmental Engineering Science, 21, 463–469. doi:10.1089/1092875041358467.

    Article  CAS  Google Scholar 

  11. Miller, R. M., & Bartha, R. (1989). Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkane. Applied and Environmental Microbiology, 55, 269–274.

    CAS  Google Scholar 

  12. Kunieda, H., Nakano, A., & Pes, M. A. (1995). Effect of oil on the solubilization in microemulsion systems including nonionic surfactant mixtures. Langmuir, 11, 3302–3306. doi:10.1021/la00009a006.

    Article  CAS  Google Scholar 

  13. Nayyar, S. P., Sabatinl, D. A., & Harwell, J. H. (1994). Surfactant adsolubilization and modified admicellar sorption of nonpolar, polar, and ionizable organic contaminants. Environmental Science & Technology, 28, 1874–1881. doi:10.1021/es00060a018.

    Article  CAS  Google Scholar 

  14. Tiehm, A. (1994). Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology, 60, 258–263.

    CAS  Google Scholar 

  15. Shell, B. (2007). Enhancing bioremediation of polycyclic aromatic hydrocarbon. Journal of the U.S. SJWP, 1, 68–80.

    Google Scholar 

  16. Guerin, W. F., & Jones, G. E. (1988). Mineralization of phenanthrene by a Mycobacterium sp. Applied and Environmental Microbiology, 54, 937–944.

    CAS  Google Scholar 

  17. Shin, K.-H., Kim, K.-W., & Ahn, Y. (2006). Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization–biodegradation process. Journal of Hazardous Materials, B137, 1831–1837. doi:10.1016/j.jhazmat.2006.05.025.

    Article  CAS  Google Scholar 

  18. Rehmann, L., & Daugulis, A. J. (2008). Enhancement of PCB degradation by Burkholderia xenovorans LB400 in biphasic systems by manipulating culture conditions. Biotechnology and Bioengineering, 99, 521–528. doi:10.1002/bit.21610.

    Article  CAS  Google Scholar 

  19. Bardi, J. L., Mattei, A., Steffan, S., & Marzona, M. (2000). Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enzyme and Microbial Technology, 27, 709–713. doi:10.1016/S0141-0229(00)00275-1.

    Article  CAS  Google Scholar 

  20. Mulder, H., Breure, A. M., van Honschooten, D., Grotenhuis, J. T. C., van Andel, J. G., & Rulkens, W. H. (1998). Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Applied Microbiology and Biotechnology, 50, 277–283. doi:10.1007/s002530051290.

    Article  CAS  Google Scholar 

  21. Zheng, Z., & Obbard, J. P. (2002). Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. Journal of Environmental Quality, 31, 1842–1847.

    Article  CAS  Google Scholar 

  22. Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–317.

    Google Scholar 

  23. Zhang, Y., & Miller, R. M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Applied and Environmental Microbiology, 58, 3276–3282.

    CAS  Google Scholar 

  24. Volkering, F., Breure, A. M., Andel, J. G. V., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 62, 1699–1705.

    Google Scholar 

  25. Edwards, D. A., Luthy, R. G., & Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology, 25, 127–133. doi:10.1021/es00013a014.

    Article  CAS  Google Scholar 

  26. Volkering, F., Breure, A. M., & Rulkens, W. H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401–417. doi:10.1023/A:1008291130109.

    Article  CAS  Google Scholar 

  27. Cho, K.-J., Kim, Y.-B., & Kim, E.-K. (1999). Production and application of sophorolipid, a microbial surfactant. Korean Journal of Biotechnology and Bioengineering, 12, 747–753.

    Google Scholar 

  28. Rau, U., Hammen, S., Heckmann, R., Wray, V., & Lang, S. (2001). Sophorolipids: A source for novel compounds. Industrial Crops and Products, 13, 85–92. doi:10.1016/S0926-6690(00)00055-8.

    Article  CAS  Google Scholar 

  29. Kim, H.-S., Kim, Y.-B., Lee, B.-S., & Kim, E.-K. (2005). Sophorolipid production by Candida bombicola ATCC 22214 from a corn oil processing byproduct. Journal of Microbiology and Biotechnology, 15, 55–58.

    CAS  Google Scholar 

  30. Bharati, S., Røstum, G. A., & Løberg, R. (1994). Calibration and standardization of Iatroscan (TLC-FID) using standards derived from crude oils. Organic Geochemistry, 22, 835–862. doi:10.1016/0146-6380(94)90143-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Government (MEST) R0A-2007-000-10015-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SW., Kim, YB., Shin, JD. et al. Enhanced Biodegradation of Hydrocarbons in Soil by Microbial Biosurfactant, Sophorolipid. Appl Biochem Biotechnol 160, 780–790 (2010). https://doi.org/10.1007/s12010-009-8580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8580-5

Keywords

Navigation