Skip to main content
Log in

Mode of action of nanoparticles against insects

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The employment of nanoparticles obtained through various synthesis routes as novel pesticides recently attracted high research attention. An impressive number of studies have been conducted to test their toxic potential against a wide number of arthropod pests and vectors, with major emphasis on mosquitoes and ticks. However, precise information on the mechanisms of action of nanoparticles against insects and mites are limited, with the noteworthy exception of silica, alumina, silver, and graphene oxide nanoparticles on insects, while no information is available for mites. Here, I summarize current knowledge about the mechanisms of action of nanoparticles against insects. Both silver and graphene oxide nanoparticles have a significant impact on insect antioxidant and detoxifying enzymes, leading to oxidative stress and cell death. Ag nanoparticles also reduced acetylcholinesterase activity, while polystyrene nanoparticles inhibited CYP450 isoenzymes. Au nanoparticles can act as trypsin inhibitors and disrupt development and reproduction. Metal nanoparticles can bind to S and P in proteins and nucleic acids, respectively, leading to a decrease in membrane permeability, therefore to organelle and enzyme denaturation, followed by cell death. Besides, Ag nanoparticles up- and downregulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure. The toxicity of SiO2 and Al2O3 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration. In the final section, insect nanotoxicology research trends are critically discussed, outlining major challenges to predict the ecotoxicological consequences arising from the real-world use of nanoparticles as pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103

    Article  CAS  Google Scholar 

  • Afrasiabi Z, Popham HJ, Stanley D, Suresh D, Finley K, Campbell J et al (2016) Dietary silver nanoparticles reduce fitness in a beneficial, but not pest, insect species. Archiv Insect Biochem Physiol 93:190–201

    Article  CAS  Google Scholar 

  • Alyahya SA, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Vaseeharan B, Ishwarya R, Yazhiniprabha M, Benelli G (2018) Swift fabrication of Ag nanostructures using a colloidal solution of Holostemma ada-kodien (Apocynaceae)—antibiofilm potential, insecticidal activity against mosquitoes and non-target impact on water bugs. J Photochem Photobiol B Biol 181:70–79. https://doi.org/10.1016/j.jphotobiol.2018.02.019

    Article  CAS  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256

    Article  Google Scholar 

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186. https://doi.org/10.1371/journal.pone.0053186

    Article  CAS  Google Scholar 

  • Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2016) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6:445–450

    Article  CAS  Google Scholar 

  • Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2017) Toxicity on dengue mosquito vectors through Myristica frangrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226

    Article  CAS  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15. https://doi.org/10.1007/s10340-017-0898-0

    Article  Google Scholar 

  • Ávalos A, Haza AI, Drosopoulou E, Mavragani-Tsipidou P, Morales P (2015) In vivo genotoxicity assessment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila. Food Chem Toxicol 85:114–119

    Article  CAS  Google Scholar 

  • Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117(5):576–581

    Article  CAS  Google Scholar 

  • Azarudeen RMST, Govindarajan M, Amsath A, Muthukumaran U, Benelli G (2017) Single-step biofabrication of silver nanocrystals using Naregamia alata: a cost effective and eco-friendly control tool in the fight against malaria, Zika virus and St. Louis encephalitis mosquito vectors. J Clust Sci 28(1):179–203

  • Azarudeen RMST, Govindarajan M, Amsath A, Kadaikunnan S, Alharbi NS, Vijayan P, Muthukumaran U, Benelli G (2016) Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv 6:96573–96583

    Article  CAS  Google Scholar 

  • Aziz AT, Ali Alshehri M, Panneerselvam C, Murugan K, Trivedi S, Mahyoub JA, Hassan MM, Maggi F, Sut S, Dall’Acqua S, Canale A, Benelli G (2018) The desert wormwood (Artemisia herba-alba)—from Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. J Photochem Photobiol B Biol 180:225–234

    Article  CAS  Google Scholar 

  • Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B Biol 173:598–605. https://doi.org/10.1016/j.jphotobiol.2017.06.040

    Article  CAS  Google Scholar 

  • Banumathi B, Vaseeharan B, Periyannan R, Prabhu NM, Ramasamy P, Murugan K, Canale A, Benelli G (2017a) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110

    Article  CAS  Google Scholar 

  • Banumathi B, Vaseeharan B, Ramachandran I, Marimuthu Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017b) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651

    Article  Google Scholar 

  • Banumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017c) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci 28:2027–2040. https://doi.org/10.1007/s10876-017-1201-5

    Article  CAS  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95:58–68

    Article  CAS  Google Scholar 

  • Benelli G (2018) Gold nanoparticles—against parasites and insect vectors. Acta Trop 178:73–80. https://doi.org/10.1016/j.actatropica.2017.10.021

    Article  CAS  Google Scholar 

  • Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96. https://doi.org/10.1016/j.actatropica.2017.06.028

    Article  Google Scholar 

  • Benelli G, Duggan MF (2018) Management of arthropod vector data—social and ecological dynamics facing the One Health perspective. Acta Trop 182:80–91

    Article  Google Scholar 

  • Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2. https://doi.org/10.1007/s10876-017-1165-5

    Article  CAS  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754

    Article  Google Scholar 

  • Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop 179:47–54

    Article  CAS  Google Scholar 

  • Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36(4):309–318

    Article  Google Scholar 

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017a) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10

    Article  CAS  Google Scholar 

  • Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, Higuchi A, Alarfaj AA, Mehlhorn H, Canale A (2017b) Nanoparticles as effective acaricides against ticks—a review. Ticks Tick-borne Dis 8:821–826. https://doi.org/10.1016/j.ttbdis.2017.08.004

    Article  Google Scholar 

  • Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A (2018) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Poll Res. https://doi.org/10.1007/s11356-017-9752-4

  • Bharani RA, Namasivayam SKR (2017). Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.)(Lepidoptera: Noctuidae)—An eco-friendly approach of insect pest control. J Environ Chem Eng 5(1): 453-467

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    Article  CAS  Google Scholar 

  • Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Mahesh Kumar P, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R, Aziz AT, Syuhei B, Saleh Alsalhi M, Devanesan S, Nicoletti M, Wei H, Benelli G (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol Res 115:1015–1025. https://doi.org/10.1007/s00436-015-4829-9

  • Chifiriuc MC, Ratiu AC, Popa M, Ecovoiu AA (2016) Drosophotoxicology: an emerging research area for assessing nanoparticles interaction with living organisms. Int J Mol Sci 17:36. https://doi.org/10.3390/ijms17020036

    Article  CAS  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) J Pest Sci 84:99–105

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Durán N, Durán M, Souza CED (2017) Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. J Braz Chem Soc 28:927–932

    Google Scholar 

  • Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mat 305:30–40

    Article  CAS  Google Scholar 

  • Fauci AS, Morens DM (2016) Zika virus in the Americas—yet another arbovirus threat. N Engl J Med 374:601–604. https://doi.org/10.1056/NEJMp1600297

    Article  Google Scholar 

  • Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575

    Article  CAS  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567. https://doi.org/10.1080/21691401.2017.1329739

    Article  CAS  Google Scholar 

  • Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Applied Pharmacol 242:326–332

    Article  CAS  Google Scholar 

  • Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicology 294:61–79

    Article  CAS  Google Scholar 

  • Ga'al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018). Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49-56

  • Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029

    Article  CAS  Google Scholar 

  • Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016a) One-pot biosynthesis of silver nanoparticles using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016b) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B Biol 161:482–489

    Article  CAS  Google Scholar 

  • Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal Chem 50:1–10

    Article  CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258

    Article  CAS  Google Scholar 

  • Jayaseelan C, Gandhi PR, Rajasree SRR, Suman TY, Mary RR (2018) Toxicity studies of nanofabricated palladium against filariasis and malaria vectors. Environ Sci Poll Res 25:324–332

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2012) Banana fly (Drosophila sp.) synthesizes CdS nanoparticles! J Bionanosci 6(2):99–103

    Article  CAS  Google Scholar 

  • Jiang X, Miclăuş T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, Chen C, Beer C (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189

    Article  CAS  Google Scholar 

  • Jinu U, Vaitheeswari K, Manish T, Benelli G, Venkatachalam P (2018) Nanotitania crystals induced efficient photocatalytic dye degradation, antimicrobial and larvicidal activity. J Photochem Photobiol B Biol 178:496–504

    Article  CAS  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Proc Saf Environ Prot 109:82–96

    Article  CAS  Google Scholar 

  • Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, Tamilselvan S, Benelli G, Perumal P (2017) Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci 28:1667–1684

    Article  CAS  Google Scholar 

  • Kavallieratos NG, Athanassiou CG, Peteinatos GG, Boukouvala MC, Benelli G (2018) Insecticidal effect and impact on fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ Sci Poll Res. https://doi.org/10.1007/s11356-017-9565-5

  • Khater H, Hendawy N, Govindarajan M, Murugan K, Benelli G (2016) Photosensitizers in the fight against ticks: safranin as a novel photodynamic acaricide to control the camel tick Hyalomma dromedarii (Ixodidae). Parasitol Res 115:3747–3758

    Article  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–472

    Article  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Lee SW, Kim SM, Choi J (2009) Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28:86–91

    Article  CAS  Google Scholar 

  • Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40:913–922

    Article  CAS  Google Scholar 

  • Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363

    Article  CAS  Google Scholar 

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):2445

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Analyt Chem 85:3036–3049

    Article  CAS  Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561

    Article  CAS  Google Scholar 

  • Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6): 2243–2253

  • Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  Google Scholar 

  • Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015c) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654

    Article  Google Scholar 

  • Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015d) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610

    Article  Google Scholar 

  • Murugan K, Jaganathan A, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Wang L, Hwang JS, Wei H, Saleh Alsalhi M, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G (2016a) Synthesis of nanoparticles using chitosan from crab shells: implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328

    Article  CAS  Google Scholar 

  • Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C, Dinesh D, Chandirasekar R, Kovendan K, Suresh U, Subramaniam J, Paulpandi M, Vadivalagan C, Rajaganesh R, Wei H, Syuhei B, Aziz AT, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016b) Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res 115:1071–1083

    Article  Google Scholar 

  • Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016c). Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23(16):16671–16685

  • Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A, Nicoletti M, Benelli G (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Poll Res. https://doi.org/10.1007/s11356-017-0313-7

  • Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101(3):550–560

    Article  CAS  Google Scholar 

  • Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106

    Article  CAS  Google Scholar 

  • Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37

    Article  CAS  Google Scholar 

  • Nair PMG, Park SY, Choi J (2013) Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 92:592–599

    Article  CAS  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Coll Interf Sci 156(1):1–13

    Article  CAS  Google Scholar 

  • Narkhede CP, Suryawanshi RK, Patil CD, Borase HP, Patil SV (2016) Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: a novel approach for pest control. Biocatal Agric Biotechnol 8:8–12

    Google Scholar 

  • Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH (2015) Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9(3):396–403

    Article  CAS  Google Scholar 

  • Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979

    Article  CAS  Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25

    Article  CAS  Google Scholar 

  • Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci 52:229–241

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000-1007

  • Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344

    Article  CAS  Google Scholar 

  • Pavunraj M, Baskar K, Duraipandiyan V, Al-Dhabi NA, Rajendran V, Benelli G (2017) Toxicity of Ag nanoparticles synthesized using stearic acid from Catharanthus roseus leaf extract against Earias vittella and mosquito vectors (Culex quinquefasciatus and Aedes aegypti). J Clust Sci 28:2477–2492

    Article  CAS  Google Scholar 

  • Philbrook NA, Winn LM, Afrooz AN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–436

    Article  CAS  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microb Biotechnol 98:1951–1961

    Article  CAS  Google Scholar 

  • Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51

    Article  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93:303–309

    Article  CAS  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel bio-compatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotox Environ Saf 121:31–38

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  Google Scholar 

  • Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda VM, Desimone MF (2016) Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 cells. Current Pharm Biotechnol 17:465–470

    Article  CAS  Google Scholar 

  • Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, Shi ZH (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem. https://doi.org/10.1080/02772248.2017.1387786

  • Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888

    Article  CAS  Google Scholar 

  • Sooresh A, Kwon H, Taylor R, Pietrantonio P, Pine M, Sayes CM (2011) Surface functionalization of silver nanoparticles: novel applications for insect vector control. ACS Appl Mat Interf 3:3779–3787

    Article  CAS  Google Scholar 

  • Stadler T, Lopez-Garcia GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70:17–25

    Google Scholar 

  • Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod 110:2-9

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23:7543–7558

    Article  CAS  Google Scholar 

  • Subramaniam J, Murugan K, Jebanesan A, Pontheckan P, Dinesh D, Nicoletti M, Wei H, Higuchi A, Kumar S, Canale A, Benelli G (2017) Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae? J Clust Sci 28:413–436

    Article  CAS  Google Scholar 

  • Suganya P, Vaseeharan B, Vijayakumar S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 173:404–411. https://doi.org/10.1016/j.jphotobiol.2017.06.004

    Article  CAS  Google Scholar 

  • Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325

    Article  Google Scholar 

  • Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108

    Article  CAS  Google Scholar 

  • Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybrid as a biolarvicide. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0712-0

  • Sundararajan B, Kumari BR (2017). Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43, 187-196

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  Google Scholar 

  • Teimouri M, Nejad FK, Attar F, Saboury AA, Kostova I, Benelli G, Falahati F (2018) Green fabricated gold nanoparticles: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—a review. J Cleaner Prod 184:740–753. https://doi.org/10.1016/j.jclepro.2018.02.268

    Article  CAS  Google Scholar 

  • Usha Rani P, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87:191–200

    Article  Google Scholar 

  • Wilke ABB, Beier JC, Benelli G (2018) Transgenic mosquitoes—fact or fiction? Trends Parasitol. https://doi.org/10.1016/j.pt.2018.02.003

  • Xie Y, Wang B, Li F, Ma L, Ni M, Shen W, Hong F, Li B (2014) Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One 9(6):e101062

    Article  CAS  Google Scholar 

  • Yakob L, Walker T (2016) Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Glob Health 4(3):e148–e149

    Article  Google Scholar 

  • Yasur J, Usha-Rani P (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Andrea Lucchi and Angelo Canale for their kind suggestions and comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Conflict of interest

Giovanni Benelli declares no competing interests. The mention of trade names or commercial products in this article does not imply recommendation or endorsement by the University of Pisa and Sant’Anna School of Advanced Studies.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benelli, G. Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25, 12329–12341 (2018). https://doi.org/10.1007/s11356-018-1850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1850-4

Keywords

Navigation