Skip to main content
Log in

Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plant-derived nanomaterials opened a green approach in solving the current environment issues. Present study focused on rapid microwave-assisted synthesis and applications of gold and silver nanoparticles mediated by aqueous leaf extract of Mussaenda glabrata. The synthesized nanoparticles were characterized by UV-vis, FT-IR, powder XRD, energy-dispersive X-ray spectroscopy (EDX), transmission electron (TEM), and atomic force microscopic techniques (AFM). FCC crystal structure of both nanoparticles was confirmed by peaks corresponding to (111), (200), (220), and (311) planes in XRD spectra and bright circular spots in SAED pattern. IC50 values shown by gold and silver nanoparticles (44.1 ± 0.82 and 57.92 ± 1.33 μg/mL) reflected their high free radical scavenging potential. The synthesized gold and silver nanoparticles revealed their potency to inhibit pathogenic microorganisms Bacillus pumilus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Penicillium chrysogenum. Anthropogenic pollutants rhodamine B and methyl orange were effectively degraded from aquatic environment and waste water sewages of dye industries using the prepared nanocatalysts. The catalytic capacities of the synthesized nanoparticles were also exploited in the reduction of 4-nitrophenol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasi E, Milani M, Fekri Aval S et al (2014) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol:1–8. doi:10.3109/1040841X.2014.912200

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016a) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. doi:10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  • Akter R, Uddin SJ, Grice ID, Tiralongo E (2013) Cytotoxic activity screening of Bangladeshi medicinal plant extracts. J Nat Med 68:246–252. doi:10.1007/s11418-013-0789-5

    Article  Google Scholar 

  • Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21:143–152. doi:10.1016/j.jsps.2012.05.002

    Article  Google Scholar 

  • Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694. doi:10.1021/ar010065m

  • Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chemie - Int Ed 50:11312–11359. doi:10.1002/anie.201101274

    Article  CAS  Google Scholar 

  • Balashanmugam P, Durai P, Balakumaran MD, Kalaichelvan PT (2016) Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. J Photochem Photobiol B Biol 165:163–173. doi:10.1016/j.jphotobiol.2016.10.013

    Article  CAS  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. doi:10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  • Baruah B, Gabriel GJ, Akbashev MJ, Booher ME (2013) Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Langmuir 29:4225–4234

    Article  CAS  Google Scholar 

  • Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846. doi:10.1021/cm500316k

    Article  Google Scholar 

  • Basu S, Maji P, Ganguly J (2016) Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract. J Exp Nanosci 11:660–668. doi:10.1080/17458080.2015.1112042

    Article  CAS  Google Scholar 

  • Benelli G (2015) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34. doi:10.1007/s00436-015-4800-9

    Article  Google Scholar 

  • Bhargava A, Jain N, Khan MA et al (2016) Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manag 183:22–32. doi:10.1016/j.jenvman.2016.08.021

    Article  CAS  Google Scholar 

  • Carlsen MH, Halvorsen BL, Holte K et al (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9:3. doi:10.1186/1475-2891-9-3

    Article  Google Scholar 

  • Chang S-T, Wu J-H, Wang S-Y et al (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49:3420–3424. doi:10.1021/jf0100907

    Article  CAS  Google Scholar 

  • Chung I-M, Park I, Seung-Hyun K et al (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40. doi:10.1186/s11671-016-1257-4

    Article  Google Scholar 

  • Das S, Das J, Samadder A et al (2013) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2 / M arrest in A375 cells. Colloids Surfaces B Biointerfaces 101:325–336. doi:10.1016/j.colsurfb.2012.07.008

    Article  CAS  Google Scholar 

  • Engelbrekt C, Sørensen KH, Zhang J et al (2009) Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. J Mater Chem 19:7839. doi:10.1039/b911111e

    Article  CAS  Google Scholar 

  • Gangula A, Podila RMR et al (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27:15268–15274. doi:10.1021/la2034559

    Article  Google Scholar 

  • Gurunathan S (2014) Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. doi:10.1016/j.arabjc.2014.11.014

  • Hamedi S, Shojaosadati SA, Mohammadi A (2017) Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J Photochem Photobiol B Biol 167:36–44. doi:10.1016/j.jphotobiol.2016.12.025

    Article  CAS  Google Scholar 

  • Hong X, Wen J, Xiong X, Hu Y (2016) Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res 23:4489–4497. doi:10.1007/s11356-015-5668-z

    Article  CAS  Google Scholar 

  • Huo Y, Singh P, Kim YJ et al (2017) Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif Cells, Nanomedicine, Biotechnol 4:1–13. doi:10.1080/21691401.2017.1307213

    Article  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA et al (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23:13754–13788. doi:10.1007/s11356-016-6457-z

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429. doi:10.1016/j.indcrop.2012.12.019

    Article  CAS  Google Scholar 

  • Jeyapragasam T, Kannan RS (2016) Microwave assisted green synthesis of silver nanorods as catalysts for rhodamine B degradation. Russ J Phys Chem A 90:1334–1337. doi:10.1134/S003602441607030X

    Article  CAS  Google Scholar 

  • Joseph S, Mathew B (2014a) Microwave-assisted facile synthesis of silver nanoparticles in aqueous medium and investigation of their catalytic and antibacterial activities. J Mol Liq 197:346–352. doi:10.1016/j.molliq.2014.06.008

    Article  CAS  Google Scholar 

  • Joseph S, Mathew B (2014b) Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. J Nanoparticles 2014:9. doi:10.1155/2014/967802

    Article  Google Scholar 

  • Joseph S, Mathew B (2015a) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191. doi:10.1016/j.molliq.2015.01.027

    Article  CAS  Google Scholar 

  • Joseph S, Mathew B (2015b) Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim Acta - Part A Mol Biomol Spectrosc 136:1371–1379. doi:10.1016/j.saa.2014.10.023

    Article  CAS  Google Scholar 

  • Joseph S, Mathew B (2015c) Facile synthesis of silver nanoparticles and their application in dye degradation. Mater Sci Eng B 195:90–97. doi:10.1016/j.mseb.2015.02.007

    Article  CAS  Google Scholar 

  • Kalpanadevi V, Mohan VR (2012) In vitro antioxidant studies of Begonia malabarica Lam. and Begonia floccifera Bedd. Asian Pac J Trop Biomed 2:S1572–S1577. doi:10.1016/S2221-1691(12)60455-9

    Article  Google Scholar 

  • Kharat SN, Mendhulkar VD (2016) Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C 62:719–724. doi:10.1016/j.msec.2016.02.024

    Article  CAS  Google Scholar 

  • Kim Y-J, Wang C, Mathiyalagan R et al (2016) Rapid green synthesis of silver and gold nanoparticles using<em> Dendropanax morbifera</em> leaf extract and their anticancer activities. Int J Nanomedicine 11:3691–3701. doi:10.2147/IJN.S97181

    Article  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520. doi:10.1016/j.procbio.2012.06.004

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L et al (2016) One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater Sci Eng C 62:725–731. doi:10.1016/j.msec.2016.02.029

    Article  CAS  Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S et al (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res 22:17753–17768. doi:10.1007/s11356-015-5001-x

    Article  CAS  Google Scholar 

  • Li L, Hu J, Shi X et al (2016) Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation. Environ Sci Pollut Res 23:17880–17900. doi:10.1007/s11356-016-6626-0

    Article  CAS  Google Scholar 

  • Lim SH, Ahn E-Y, Park Y (2016) Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Res Lett 11:474. doi:10.1186/s11671-016-1694-0

    Article  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317. doi:10.1016/j.jscs.2012.04.007

    Article  Google Scholar 

  • Manjari G, Saran S, Arun T et al (2017) Facile Aglaia elaeagnoidea mediated synthesis of silver and gold nanoparticles: antioxidant and catalysis properties. J Clust Sci. doi:10.1007/s10876-017-1199-8

  • MeenaKumari M, Philip D (2015) Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim Acta - Part A Mol Biomol Spectrosc 135:632–638. doi:10.1016/j.saa.2014.07.037

    Article  CAS  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. doi:10.1016/j.biotechadv.2013.01.003

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517. doi:10.1007/s11051-007-9275-x

    Article  Google Scholar 

  • Moo-Huchin VM, Moo-Huchin MI, Estrada-León RJ et al (2015) Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem 166:17–22. doi:10.1016/j.foodchem.2014.05.127

    Article  CAS  Google Scholar 

  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surfaces B Biointerfaces 85:360–365. doi:10.1016/j.colsurfb.2011.03.009

    Article  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi:10.1021/la9502711

    Article  CAS  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006. doi:10.1039/c4ra13315c

    Article  CAS  Google Scholar 

  • Oemrawsingh SSR, Markešević N, Gwinn EG et al (2012) Spectral properties of individual DNA-hosted silver nanoclusters at low temperatures. J Phys Chem C 116:25568–25575. doi:10.1021/jp307848t

    Article  CAS  Google Scholar 

  • Otari S, Patil RM, Nadaf NH et al (2014) Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res 21:1503–1513. doi:10.1007/s11356-013-1764-0

    Article  CAS  Google Scholar 

  • Paul B, Bhuyan B, Purkayastha DD, Dhar SS (2016) Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J Photochem Photobiol B Biol 154:1–7. doi:10.1016/j.jphotobiol.2015.11.004

    Article  CAS  Google Scholar 

  • Perugu S, Nagati V, Bhanoori M (2015) Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study. Appl Nanosci 6:747–753. doi:10.1007/s13204-015-0486-7

    Article  Google Scholar 

  • Phull A-R, Abbas Q, Ali A et al (2016) Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Futur J Pharm Sci 2:31–36. doi:10.1016/j.fjps.2016.03.001

    Article  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. doi:10.1186/2228-5326-2-32

    Article  Google Scholar 

  • Rai M, Ingle AP, Birla S, et al (2015) Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol 1–24. doi: 10.3109/1040841X.2015.1018131

  • Rajan A, Vilas V, Philip D (2015) Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq 212:331–339. doi:10.1016/j.molliq.2015.09.013

    Article  CAS  Google Scholar 

  • Ramakrishna M, Rajesh Babu D, Gengan RM et al (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostructure Chem 6:1–13. doi:10.1007/s40097-015-0173-y

    Article  CAS  Google Scholar 

  • Ramamurthy C, Padma M, Mariya Samadanam ID et al (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surfaces B Biointerfaces 102:808–815. doi:10.1016/j.colsurfb.2012.09.025

    Article  CAS  Google Scholar 

  • Rathi Sre PR, Reka M, Poovazhagi R et al (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta - Part A Mol Biomol Spectrosc 135:1137–1144. doi:10.1016/j.saa.2014.08.019

    Article  CAS  Google Scholar 

  • Seralathan J, Stevenson P, Subramaniam S et al (2014) Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta - Part A Mol Biomol Spectrosc 118:349–355. doi:10.1016/j.saa.2013.08.114

    Article  CAS  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897. doi:10.1016/j.jff.2015.06.018

    Article  CAS  Google Scholar 

  • Shashirekha MN, Mallikarjuna SE, Rajarathnam S (2013) Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit Rev Food Sci Nutr 55:1324–1339. doi:10.1080/10408398.2012.692736

    Article  Google Scholar 

  • Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. doi:10.1039/c1cs15219j

    Article  CAS  Google Scholar 

  • Subbaiah MV, Kim D-S (2016) Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicol Environ Saf 128:109–117. doi:10.1016/j.ecoenv.2016.02.016

    Article  CAS  Google Scholar 

  • Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta - Part A Mol Biomol Spectrosc 102:15–23. doi:10.1016/j.saa.2012.09.042

    Article  CAS  Google Scholar 

  • Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta Part A Mol Biomol Spectrosc 151:939–944. doi:10.1016/j.saa.2015.07.009

    Article  CAS  Google Scholar 

  • Tong L, Chuang C-C, Wu S, Zuo L (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25. doi:10.1016/j.canlet.2015.07.008

    Article  CAS  Google Scholar 

  • Varadavenkatesan T, Selvaraj R, Vinayagam R (2016) Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J Mol Liq 221:1063–1070. doi:10.1016/j.molliq.2016.06.064

    Article  CAS  Google Scholar 

  • Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. doi:10.1016/j.micron.2013.10.006

    Article  CAS  Google Scholar 

  • Vidyalakshmi KS, Vasanthi HR, Rajamanickam G V (2008) Ethnobotany, phytochemistry and pharmacology of Mussaenda species (Rubiaceae). Ethnobot Leafl 12:469–475. 

  • Vilas V, Philip D, Mathew J (2016) Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater Sci Eng C 61:429–436. doi:10.1016/j.msec.2015.12.083

    Article  CAS  Google Scholar 

  • Wilhelm P, Stephan D (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A Chem 185:19–25. doi:10.1016/j.jphotochem.2006.05.003

    Article  CAS  Google Scholar 

  • Yu J, Xu D, Guan HN et al (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112. doi:10.1016/j.matlet.2015.12.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance to Sijo Francis from University Grants Commission (under Faculty Development Programme), Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Mathew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Suresh Pillai

Highlights

• Gold and silver nanoparticles by easily mastered green microwave procedure.

• Triangular and spherical gold nanoparticles and quasi-spherical silver nanoparticles offer a new hope in water purification because of their excellent antimicrobial capacity.

• Antioxidant and antimicrobial efficacy increase their pharmaceutical value.

• Control of the environmental pollution utilizing the catalytic power of metal nanoparticles.

• Effective catalysts in the degradation of dyes.

Electronic supplementary material

Fig. S1

(DOCX 894 kb)

Fig. S2

(DOCX 101 kb)

Fig. S3

(DOCX 94 kb)

Fig. S4

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, S., Joseph, S., Koshy, E.P. et al. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res 24, 17347–17357 (2017). https://doi.org/10.1007/s11356-017-9329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9329-2

Keywords

Navigation