Skip to main content
Log in

Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2–4 μm in length for nanowires. At the bacterial concentration of 104 CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal S, Lefferts L, Mojet BL, Ligthart D, Hensen EJM, Mitchell DRG, Erasmus WJ, Anderson BG, Olivier EJ, Neethling JH, Datye AK (2013) Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity. Chemsuschem 6:1898–1906

    Article  CAS  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Bae E, Park HJ, Lee J, Kim Y, Yoon J, Park K, Choi K, Yi J (2010) Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ Toxicol Chem 29:2154–2160

    Article  CAS  Google Scholar 

  • Bansal V, Li V, O'Mullane AP, Bhargava SK (2010) Shape dependent electrocatalytic behaviour of silver nanoparticles. Crystengcomm 12:4280–4286

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ (2010) Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology 21

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Anegw Chem Int Edit 52:1636–1653

    Article  CAS  Google Scholar 

  • Chiu CY, Chung PJ, Lao KU, Liao CW, Huang MH (2012) Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-Nitroaniline reduction. J Phys Chem C 116:23757–23763

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  • Dong PV, Chu HH, Le TB, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2

  • Gao MJ, Sun L, Wang ZQ, Zhao YB (2013) Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mat Sci Eng C Mater 33:397–404

    Article  CAS  Google Scholar 

  • Gou LF, Chipara M, Zaleski JM (2007) Convenient, rapid synthesis of Ag nanowires. Chem Mater 19:1755–1760

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  CAS  Google Scholar 

  • Hatchett DW, White HS (1996) Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100:9854–9859

    Article  CAS  Google Scholar 

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833

    Article  CAS  Google Scholar 

  • Kerker M (1985) The optics of colloidal silver: something old and something new. J Colloid Interface 105:297–314

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Article  CAS  Google Scholar 

  • Lee C-L, Tsai Y-L, Huang C-H, Huang K-L (2013) Performance of silver nanocubes based on electrochemical surface area for catalyzing oxygen reduction reaction. Electrochem Commun 29:37–40

    Article  CAS  Google Scholar 

  • Liu JY, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  CAS  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–330

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res 10:1343–1348

    Article  CAS  Google Scholar 

  • Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32:2356–2364

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817

    Article  CAS  Google Scholar 

  • Prof YX, Dr YX, Dr BL, Dr SES (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Anegw Chem Int Edit 48:60–103

    Article  CAS  Google Scholar 

  • Quan ZW, Wang YX, Fang JY (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46:191–202

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Ren J, Wang WZ, Sun SM, Zhang L, Wang L, Chang J (2011) Crystallography facet-dependent antibacterial activity: the case of Cu2O. Ind Eng Chem Res 50:10366–10369

    Article  CAS  Google Scholar 

  • Rojas-Andrade M, Cho AT, Hu PG, Lee SJ, Deming CP, Sweeney SW, Saltikov C, Chen SW (2015) Enhanced antimicrobial activity with faceted silver nanostructures. J Mater Sci 50:2849–2858

    Article  CAS  Google Scholar 

  • Sarkar D, Halas NJ (1997) General vector basis function solution of Maxwell's equations. Phys Rev E 56:1102–1112

    Article  CAS  Google Scholar 

  • Scanlan LD et al (2013) Silver nanowire exposure results in internalization and toxicity to daphnia magna. ACS Nano 7:10681–10694

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sui M, Zhang L, Sheng L, Huang S, She L (2013) Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ 452:148–154

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  CAS  Google Scholar 

  • Vitanov T, Popov A (1983) Adsorption of SO 2 −4 on growth steps of (111) and (100) faces of silver single crystals. J Electroanal Chem Interfacial Electrochem 159:437–441

    CAS  Google Scholar 

  • Vukoje I, Lazic V, Vodnik V, Mitric M, Jokic B, Ahrenkiel SP, Nedeljkovic JM, Radetic M (2014) The influence of triangular silver nanoplates on antimicrobial activity and color of cotton fabrics pretreated with chitosan. J Mater Sci 49:4453–4460

    Article  CAS  Google Scholar 

  • Wang G, Ma XC, Huang BB, Cheng HF, Wang ZY, Zhan J, Qin XY, Zhang XY, Dai Y (2012) Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J Mater Chem 22:21189–21194

    Article  CAS  Google Scholar 

  • Wang JM, Huang CP, Pirestani D (2003) Interactions of silver with wastewater constituents. Water Res 37:4444–4452

    Article  CAS  Google Scholar 

  • Wiley B, Sun YG, Mayers B, Xia YN (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    Article  CAS  Google Scholar 

  • Xiu Z-M, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  Google Scholar 

  • Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091–1103

    Article  CAS  Google Scholar 

  • Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci Proc Impacts 15:78–92

    Article  Google Scholar 

  • Yuyun Z, Yue T, Yan C, Wenwen L, Wanshun M, Xingyu J (2010) Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J Am Chem Soc 132:12349–12356

    Article  CAS  Google Scholar 

  • Zhang QA, Li WY, Wen LP, Chen JY, Xia YN (2010) Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem Eur J 16:10234–10239

    Article  CAS  Google Scholar 

  • Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank associate professor Jian Sun of the School of Environmental Science and Engineering, Guangdong University of Technology for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyou Hu.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Wen, J., Xiong, X. et al. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res 23, 4489–4497 (2016). https://doi.org/10.1007/s11356-015-5668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5668-z

Keywords

Navigation