Skip to main content
Log in

Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biomonitoring of chemical contamination requires the use of well-established and validated tools, including biochemical markers that can be potentially affected by exposure to important environmental toxicants. Cholinesterases (ChEs) are present in a large number of species and have been successfully used for decades to discriminate the environmental presence of specific groups of pollutants. The success of cholinesterase inhibition has been due to their usefulness as a biomarker to address the presence of organophosphate (OP) and carbamate (CB) pesticides. However, its use in ecotoxicology has not been limited to such chemicals, and several other putative classes of contaminants have been implicated in cholinesterasic impairment. Nevertheless, the use of cholinesterases as a monitoring tool requires its full characterization in species to be used as test organisms. This study analyzed and differentiated the various cholinesterase forms present in two autochthonous organisms from the Ria de Aveiro (Portugal) area, namely the polychaete Diopatra neapolitana and the bivalve Solen marginatus, to be used in subsequent monitoring studies. In addition, this study also validated the putative use of the now characterized cholinesterasic forms by analyzing the in vitro effects of common anthropogenic contaminants, such as detergents, pesticides, and metals. The predominant cholinesterasic form found in tissues of D. neapolitana was acetylcholinesterase, while homogenates of S. marginatus were shown to possess an atypical cholinesterasic form, with a marked preference for propionylthiocholine. Cholinesterases from D. neapolitana were generally non-responsive towards the majority of the selected chemicals. On the contrary, strong inhibitory effects were reported for ChEs of S. marginatus following exposure to the selected pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida A, Calisto V, Esteves V, Soares AMVM, Figueira E, Freitas R (2014) Presence of carbamazepine in coastal systems: effects on bivalves. Aquat Toxicol 156:74–87

    Article  CAS  Google Scholar 

  • Alpuche-Gual L, Gold-Bouchot G (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumier. Ecotoxicol Environ Saf 71:787–797

    Article  Google Scholar 

  • Andersen RA, Aune T, Barstad JAB (1978) Characteristics of cholinesterase of the earthworm Eisenia foetida. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 61(1):81–87

    Article  Google Scholar 

  • Araújo MC, Assis CRD, Silva LC, Machado DC, Silva KCC, Lima AVA, Carvalho LB Jr, Bezerra RS, Oliveir MBM (2016) Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): from physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions. Aquat Toxicol 177:182–189

    Article  Google Scholar 

  • Bebianno MJ, Barreira LA (2009) Polycyclic aromatic hydrocarbons concentrations and biomarker responses in the clam Ruditapes decussatus transplanted in the Ria Formosa lagoon. Ecotoxicol Environ Saf 72:1849–1860

    Article  CAS  Google Scholar 

  • Bergayou H, Mouneyrac C, Pellerin J, Moukrim A (2009) Oxidative stress responses in bivalves (Scrobicularia plana, Cerastoderma edule) from the Oued Souss estuary (Morocco). Ecotoxicolgy and Environmental Safety 72:765–769

    Article  CAS  Google Scholar 

  • Bianco K, Yusseppone MS, Otero S, Luquet C, Ríos de Molina MC, Kristoff G (2013) Cholinesterases and neurotoxicity as highly sensitive biomarkers for an organophosphate insecticide in a freshwater gastropod (Chilina gibbosa) with low sensitivity carboxylesterases. Aquat Toxicol 144-145:26–35

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brandão FP, Pereira JL, Gonçalves F, Nunes B (2011) The impact of paracetamol on selected biomarkers of the mollusk species Corbicula fluminea. Environ Toxicol 29:74–83

    Article  Google Scholar 

  • Coelho JP, Nunes M, Dolbeth M, Pereira ME, Duarte AC, Pardal MA (2008) The role of two sediment-dwelling invertebrates on the mercury transfer from sediments to the estuarine trophic web. Estuar Coast Shelf Sci 78:505–512

    Article  CAS  Google Scholar 

  • Cooper LL, Bidwell JR (2006) Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide. Aquat Toxicol 76:258–267

    Article  CAS  Google Scholar 

  • Costa LG (2013) Chapter 22: toxic effects of pesticides in Casarett and Doull’s toxicology: the basic science of poisons, 8th edn. McGraw-Hill Education, New York

    Google Scholar 

  • Cunha T, Hall A, Queiroga H (2005) Estimation of the Diopatra neapolitana annual harvest resulting from digging activity in Canal de Mira, Ria de Aveiro. Fish Res 76(1):56–66

    Article  Google Scholar 

  • Cunha I, Mangas-Ramirez E, Guilhermino L (2007) Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comparative Biochemistry and Physiology, Part C 145:648–657

    CAS  Google Scholar 

  • Dahm KCS, Rückert C, Tonial EM, Bonan CD (2006) In vitro exposure of heavy metals on nucleotidase and cholinesterase activities from the digestive gland of Helix aspersa. Comparative Biochemistry and Physiology, Part C 143:316–320

    Google Scholar 

  • Diamantino TC, Almeida E, Soares AMVM, Guilhermino L (2003) Characterization of cholinesterases from Daphnia magna Straus and their inhibition by zinc. Bull Environ Contam Toxicol 71:219–225

    Article  CAS  Google Scholar 

  • Dias JM (2009). Hidromorfologia da Ria de Aveiro: alterações de origem antropogénica e natural. Debater a Europa 99–121

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharmacol 7:88–95

    CAS  Google Scholar 

  • Ferrari A, Venturino A, Pechén de D’Angelo AM (2007) Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss, Comp. Biochem. Physiol. Part C 146:308–313

    Google Scholar 

  • Fonseca LC, Costa PF (2008). Poliquetas: sua obtenção, impactos e medidas de gestão. In abstract book of the 14° Congresso da Associação Portuguesa para o desenvolvimento Regional. 833–851

  • Frasco MF, Fournier D, Carvalho F, Guilhermino L (2006) Cholinesterase from the common prawn (Palaemon serratus) eyes: catalytic properties and sensitivity to organophosphate and carbamate compounds. Aquat Toxicol 77:412–421

    Article  CAS  Google Scholar 

  • Freitas R, Costa E, Velez C, Santos J, Lima A, Oliveira C, Rodrigues AM, Quintino V, Figueira E (2012) Looking for suitable biomarkers in benthic macroinvertebrates inhabiting coastal areas with low metal contamination. Ecotoxicol Environ Saf 75:109–118

    Article  CAS  Google Scholar 

  • Freitas R, Martins R, Campino B, Figueira E, Soares AMVM, Montaudouin X (2014) Trematodes communities in cockles (Cerastoderma edule) of Ria de Aveiro (Portugal): influence of a contamination gradient. Mar Pollut Bull 82:117–126

    Article  CAS  Google Scholar 

  • Freitas R, Coelho D, Pires A, Soares AMVM, Figueira E, Nunes B (2015) Preliminary evaluation of Diopatra neapolitana regenerative capacity as a biomarker for paracetamol exposure. Environ Sci Pollut Res 22(17):13382–13392. doi:10.1007/s11356-015-4589-1

    Article  CAS  Google Scholar 

  • Friedenauer S, Berlet HH (1989) Sensitivity and variability of the Bradford protein assay in the presence of detergents. Anal Biochem 178(2):263–268

    Article  CAS  Google Scholar 

  • Garcia LM, Castro B, Ribeiro R, Guilhermino L (2000) Characterization of cholinesterase from guppy (Poecilia reticulata) muscle and it’s in vitro inhibition by environmental contaminants. Biomarkers 5:274–284

    Article  CAS  Google Scholar 

  • Gonçalves A, Padrão J, Gonçalves F, Nunes B (2010) In vivo acute effects of several pharmaceutical drugs (diazepam, clofibrate, clofibric acid) and detergents (sodium dodecylsulphate and benzalkonium chloride) on cholinesterases from Gambusia holbrooki. Fresenius Environ Bull 4:1–12

    Google Scholar 

  • Guilhermino L, Barros P, Silva MC, Soares AMVM (1998) Should the use of inhibition of cholinesterases as a specific biomarker for organophosphate and carbamate insecticides be questioned? Biomarkers 3(2):157–163

    Article  CAS  Google Scholar 

  • Guilhermino L, Lacerda MN, Nogueira AJA, Soares AMVM (2000) In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring. Sci Total Environ 247:137–141

    Article  CAS  Google Scholar 

  • Hannam ML, Hagger JA, Jones MB, Galloway TS (2008) Characterisation of esterases as potential biomarkers of pesticide exposure in the lugworm Arenicola marina (Annelida: Polychaeta). Environ Pollut 152(2):342–350

    Article  CAS  Google Scholar 

  • Herbert A, Guilhermino L, da Silva de Assis HC, Hansen P-D (1995) Acetylcholinesterase activity in aquatic organisms as pollution biomarker. Z Angew Zool 3:1–15

    Google Scholar 

  • Jbilo O, Toutant JP, Vatsis KP, Chatonnet A, Lockridge O (1994) Promoter and transcription start site of human and rabbit butyrylcholinesterase genes. J Biol Chem 269:20829–20837

    CAS  Google Scholar 

  • Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99(9):1865–1870

    Article  CAS  Google Scholar 

  • Labrot F, Ribera D, Saint-Denis M, Narbonne JF (1996) In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species. Biomarkers 1:23–30

    Article  Google Scholar 

  • Macedo MC, Macedo MI, Borges JP (1999). Conchas Marinhas de Portugal. Verbo, 497 pp

  • Mack A, Robitzki A (2000) The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5′butyrylcholinesterase-DNA study. Prog Neurobiol 60(2000):607–628

    Article  CAS  Google Scholar 

  • Maia F (2006). Estudo do ciclo reprodutor e do crescimento de Solen marginatus e Venerupis pullastra na Ria de Aveiro: contributo para a gestão destes recursos pesqueiros. Master thesis. Universidade de Aveiro

  • Martinez-Tabche L, Mora BR, Faz CG, Castelan IG, Ortiz MM, Gonzalez VU, Flores MO (1996) Toxic effects of sodium dodecylbenzenesulfonate, lead, petroleum, and their mixtures on the activity of acetylcholinesterase of Moina macropa in vitro. Environ Toxicol Water Qual 2:211–215

    Google Scholar 

  • Mora P, Michel X, Narbonne J-F (1999) Cholinesterase activity as potential biomarker in two bivalves. Environ Toxicol Pharmacol 7:253–260

    Article  CAS  Google Scholar 

  • Nunes B (2011) The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212:29–59

    CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2005) Characterization and use of the total head soluble cholinesterases from mosquitofish (Gambusia holbrooki) for screening of anticholinesterase activity. Journal of Enzyme Inhibition and Medicinal Chemistry, August 20(4):369–376

    Article  CAS  Google Scholar 

  • Nunes B, Brandão F, Sérgio T, Rodrigues S, Gonçalves F, Correia AT (2014a) Effects of environmentally relevant concentrations of metallic compounds on the flatfish Scophthalmus maximus: biomarkers of neurotoxicity, oxidative stress and metabolism. Environ Sci Pollut Res Int 21(12):7501–7511

    Article  CAS  Google Scholar 

  • Nunes B, Capela RC, Sérgio T, Caldeira C, Gonçalves F, Correia AT (2014b) Effects of chronic exposure to lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environ Sci Pollut Res Int 21(8):5689–5700

    Article  CAS  Google Scholar 

  • Nunes B, Vidal D, Barbosa I, Soares AMVM, Freitas R (2016a) Pollution effects on biochemical pathways determined in the polychaete Hediste diversicolor collected in three Portuguese estuaries. Environmental Science: Processes & Impacts (accepted for publication). doi:10.1039/C6EM00297H

    Google Scholar 

  • Nunes B, Miranda MT, Correia AT (2016b) Absence of effects of different types of detergents on the cholinesterasic activity and histological markers of mosquitofish (Gambusia holbrooki) after a sub-lethal chronic exposure. Environ Sci Pollut Res 23(15):14937–14944

    Article  CAS  Google Scholar 

  • Olson DL, Christensen GM (1980) Effects of water pollutants and other chemicals on fish acetylcholinesterase (in vitro). Environ Res 21:327–335

    Article  CAS  Google Scholar 

  • Pacheco M, Santos MA, Teles M, Oliveira M, Rebelo JE, Pombo L (2005) Biotransformation and genotoxic biomarkers in mullet species (Liza sp.) from a contaminated coastal lagoon (Ria de Aveiro, Portugal). Environ Monit Assess 107:133–153

    Article  CAS  Google Scholar 

  • Paxton H, Bailey-Brock JH (1986) Diopatra-Dexiognatha new-species a new species of Onuphidae Polychaeta from Oahu Hawaiian Islands USA. Pac Sci 40(1–4):1–6

    Google Scholar 

  • Payne JF, Mathieu A, Melvin W, Fancey LL (1996) Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32:225–231

    Article  CAS  Google Scholar 

  • Perić L, Ribarić L, Nerlović V (2013) Cholinesterase activity in the tissues of bivalves Noah’s ark shell (Arca noae) and warty venus (Venus verrucosa): characterisation and in vitro sensitivity to organophosphorous pesticide trichlorfon. Comp Biochem Physiol B: Biochem Mol Biol 165(4):243–249

    Article  Google Scholar 

  • Prax M, Vatani Shahmirzadi S, Götz F (2015) Sodium polyanethol sulfonate (SPS) falsifies protein staining and quantification and how to solve this problem. Journal of Microbiological Methods November 118:176–181

    Article  CAS  Google Scholar 

  • Ramos AS, Gonçalves F, Antunes SC, Nunes B (2012) Cholinesterase characterization in Corbicula fluminea and effects of relevant environmental contaminants: a pesticide (chlorfenvinphos) and a detergent (SDS). Journal of Environmental Science and Health, Part B. Pesticides, Food Contaminants, and Agricultural Waste 47(6):512–519

    CAS  Google Scholar 

  • Ramos AS, Antunes SC, Gonçalves F, Nunes B (2014) The gooseneck barnacle (Pollicipes pollicipes) as a candidate sentinel species for coastal contamination. Archives of Environmental and Toxicology 66(3):317–326

    Article  CAS  Google Scholar 

  • Rodrigues SR, Caldeira C, Castro BB, Gonçalves F, Nunes B, Antunes SC (2011) Cholinesterase (ChE) inhibition in pumpkinseed (Lepomis gibbosus) as environmental biomarker: ChE characterization and potential neurotoxic effects of xenobiotics. Pestic Biochem Physiol 99(2):181–188

    Article  CAS  Google Scholar 

  • Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E, Rosi G (2003) Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 145:321–329

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez JC, Walker CH (2000) In vitro and in vivo cholinesterase inhibition in Lacertides by phosphonate- and phosphorothioate-type organophosphates. Pestic Biochem Physiol 67:1–12

    Article  CAS  Google Scholar 

  • Sancho E, Fernandez-Vega C, Sanchez M, Ferrando MD, Andreu-Moliner E (2000) Alterations on AChE activity of the fish Anguilla anguilla as response to herbicide-contaminated water. Ecotox Environ Safe 46:57–63

    Article  CAS  Google Scholar 

  • Sant’Anna MC, Soares VM, Seibt KJ, Ghisleni G, Rico EP, Rosemberg DB, de Oliveira JR, Schröder N, Bonan CD, Bogo MR (2011) Iron exposure modifies acetylcholinesterase activity in zebrafish (Danio rerio) tissues: distinct susceptibility of tissues to iron overload. Fish Physiol Biochem 37(3):573–581

    Article  Google Scholar 

  • Schiedek D, Broeg K, Barsiene J, Lehtonen K, Gercken J, Pfeifer S, Vuontisjarvi H, Vuorinen P (2006) Biomarker responses as indication of contaminant effects in blue mussel (Mytilus edulis) and female eelpout (Zoarces viviparus) from the southwestern Baltic Sea. Mar Pollut Bull 53(8–9):387–405

    Article  CAS  Google Scholar 

  • Schmidt GH, Ibrahim NMM (1994) Heavy metal content (Hg2+, Cd2+, Pb2+) in various body parts: its impact on cholinesterase activity and binding glycoproteins in the grasshopper Aiolopus thalassinus adults. Ecotoxicol Environ Saf 29(2):148–164

    Article  CAS  Google Scholar 

  • Silva KCC, Assis CRD, Oliveira VM, Carvalho LB Jr, Bezerra RS (2013) Kinetic and physicochemical properties of brain acetylcholinesterase from the peacock bass (Cichla ocellaris) and in vitro effect of pesticides and metal ions. Aquat Toxicol 15(126):191–197

    Article  Google Scholar 

  • Sturm A, da Silva de Assis HC, Hansen PD (1999) Cholinesterases of marine teleosts: Enzymological characterization and potential use in the monitoring of neurotoxic contamination. Marine Environ Res 47:389–398

    Article  CAS  Google Scholar 

  • Sturm A, Wogram J, Segner H, Liess M (2000) Different sensitivity to organophosphates of acetylcholinesterase and butyrilcholinesterase from three-dpined stickleback (Gasterosteus aculeatus): application in biomonitoring. Environ Toxicol Chem 19(6):1607–1615

    Article  CAS  Google Scholar 

  • Tebble N (1966). British bivalve seashells—a handbook of identification. Trustees of the British Museum (Natural History), London

  • Valbonesi P, Sartor G, Fabbri E (2003) Characterization of cholinesterase activity in three bivalves inhabiting the North Adriatic sea and their possible use as sentinel organisms for biosurveillance programmes. Sci Total Environ 312:79–88

    Article  CAS  Google Scholar 

  • Valbonesi P, Brunelli F, Mattioli M, Rossi T, Fabbri E (2011) Cholinesterase activities and sensitivity to pesticides in different tissues of silver European eel, Anguilla anguilla. Comp Biochem Physiol 154(4):353–359

    CAS  Google Scholar 

  • Varó I, Navarro JC, Amat F, Guilhermino L (2002) Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere 48:563–569

    Article  Google Scholar 

  • Varó I, Amat F, Navarro JC (2008) Acute toxicity of dichlorvos to Aphanius iberus (Cuvier & Valenciennes, 1846) and its anti-cholinesterase effects on this species. Aquat Toxicol 88(1):53–61

    Article  Google Scholar 

  • Velez C, Figueira E, Soares AMVM, Freitas R (2015) Spatial distribution and bioaccumulation patterns in three clam populations from a low contaminated ecosystems. Estuar Coast Shelf Sci 155:114–125

    Article  CAS  Google Scholar 

  • Vera JL (2014). Endocrine disrupting pesticides in environmental samples. Doctoral thesis. University de Aveiro, Portugal

  • Xuerebe B, Noury P, Felten V, Garric J, Geffard O (2007) Cholinesterase activity in Gammarus pulex (Crustacea amphipoda): characterization and effects of clorpirifus. Toxicology 236:178–189

    Article  Google Scholar 

Download references

Acknowledgements

Bruno Nunes was hired by Researcher FCT Program (Operational Program for Human Potential, QREN, EU). This research was supported by the European Regional Development Fund (ERDF) through the Operational Competitiveness Program (COMPETE) and by national funds through Foundation for Science and Technology (FCT), under the project PEst-C/MAR/LA0015/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Thomas Braunbeck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, B., Resende, S.T. Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants. Environ Sci Pollut Res 24, 12155–12167 (2017). https://doi.org/10.1007/s11356-017-8761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8761-7

Keywords

Navigation