Skip to main content

Advertisement

Log in

Taxonomic Profiling and Metagenome Analysis of a Microbial Community from a Habitat Contaminated with Industrial Discharges

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Industrial units, manufacturing dyes, chemicals, solvents, and xenobiotic compounds, produce liquid and solid wastes, which upon conventional treatment are released in the nearby environment and thus are the major cause of pollution. Soil collected from contaminated Kharicut Canal bank (N 22°57.878′; E 072°38.478′), Ahmedabad, Gujarat, India was used for metagenomic DNA preparation to study the capabilities of intrinsic microbial community in dealing with xenobiotics. Sequencing of metagenomic DNA on the Genome Sequencer FLX System using titanium chemistry resulted in 409,782 reads accounting for 133,529,997 bases of sequence information. Taxonomic analyses and gene annotations were carried out using the bioinformatics platform Sequence Analysis and Management System for Metagenomic Datasets. Taxonomic profiling was carried out by three different complementary approaches: (a) 16S rDNA, (b) environmental gene tags, and (c) lowest common ancestor. The most abundant phylum and genus were found to be “Proteobacteria” and “Pseudomonas,” respectively. Metagenome reads were mapped on sequenced microbial genomes and the highest numbers of reads were allocated to Pseudomonas stutzeri A1501. Assignment of obtained metagenome reads to Gene Ontology terms, Clusters of Orthologous Groups of protein categories, protein family numbers, and Kyoto Encyclopedia of Genes and Genomes hits revealed genomic potential of indigenous microbial community. In total, 157,024 reads corresponded to 37,028 different KEGG hits, and amongst them, 11,574 reads corresponded to 131 different enzymes potentially involved in xenobiotic biodegradation. These enzymes were mapped on biodegradation pathways of xenobiotics to elucidate their roles in possible catalytic reactions. Consequently, information obtained from the present study will act as a baseline which, subsequently along with other “-omic” studies, will help in designing future bioremediation strategies in effluent treatment plants and environmental clean-up projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MetaSAMS:

Sequence Analysis and Management System for Metagenomic Datasets

EGTs:

Environmental gene tags

LCA:

Lowest common ancestor

GO:

Gene Ontology

COG:

Clusters of Orthologous Groups of proteins

Pfam:

Protein family

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  1. Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  2. Desai C, Pathak H, Madamwar D (2010) Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    Article  CAS  PubMed  Google Scholar 

  3. Shah V, Jain K, Desai C, Madamwar D (2011) Metagenomics and integrative ‘-omics’ technologies in microbial bioremediation: current trends and potential applications. In: Marco D (ed) Metagenomics: current innovations and future trends. Caister Academic Press, Norfolk, pp 211–240

    Google Scholar 

  4. Shah V, Jain K, Desai C, Madamwar D (2012) Molecular analyses of microbial communities involved in bioremediation. In: Satyanarayana T, Johri BN (eds) Microbes in environmental management and biotechnology. Springer, Amsterdam, pp 221–247

    Google Scholar 

  5. Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9

    Article  CAS  PubMed  Google Scholar 

  6. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kimura N (2006) Metagenomics: access to unculturable microbes in the environment. Microb Environ 21:201–215

    Article  Google Scholar 

  8. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ward N (2006) New directions and interactions in metagenomics research. FEMS Microbiol Ecol 55:331–338

    Article  CAS  PubMed  Google Scholar 

  10. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  11. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  12. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ashburner L, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight S, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27:29–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Desai C, Madamwar D (2007) Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresour Technol 98:761–768

    Article  CAS  PubMed  Google Scholar 

  19. Zakrzewski M, Bekel T, Ander C, Pühler A, Rupp O, Stoye J, Schlüter A, Goesmann A (2012) MetaSAMS—a novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets. J Biotechnol. doi:10.1016/j.jbiotec.2012.09.013

    Google Scholar 

  20. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Krause L, Daiz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36:2230–2239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Clemente JC, Jansson J, Valiente G (2010) Accurate taxonomic assignment of short pyrosequencing reads. Pac Symp Biocomput p 3–9

  24. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36:e120

    Article  PubMed Central  PubMed  Google Scholar 

  26. Huson DH, Auch AF, Qi J, Schuster SC (2007) Megan analysis of metagenomic data. Genome Res 17:377–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gao J, Ellis LB, Wackett LP (2010) The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res 38:D488–D491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online 14:40–47

    Article  Google Scholar 

  30. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Fortin N, Beaumier D, Lee K, Greer CW (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Methods 56:181–191

    Article  CAS  PubMed  Google Scholar 

  32. Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7:e40653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Adetutu EM, Smith RJ, Weber J, Aleer S, Mitchell JG, Ball AS, Juhasz AL (2013) A polyphasic approach for assessing the suitability of bioremediation for the treatment of hydrocarbon-impacted soil. Sci Total Environ 450-451:51–58

    Article  CAS  PubMed  Google Scholar 

  35. Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yang S, Wen X, Jin H, Wu Q (2012) Pyrosequencing investigation into the bacterial community in permafrost soils along the China-Russia Crude Oil Pipeline (CRCOP). PLoS One 7:e52730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ding GC, Heuer H, Smalla K (2012) Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 3:290

    PubMed Central  PubMed  Google Scholar 

  38. Sepulveda-Torres LC, Rajendran N, Dybas MJ, Criddle CS (1999) Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch Microbiol 171:424–429

    Article  CAS  PubMed  Google Scholar 

  39. Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62:2387–2392

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Arenghi FLG, Barbieri P, Bertoni G, de Lorenzo V (2001) New insights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates. EMBO Rep 5:409–414

    Article  Google Scholar 

  41. Bafana A, Devi SS, Krishnamurthi K, Chakrabarti T (2007) Kinetics of decolourisation and biotransformation of direct black 38 by C. hominis and P. stutzeri. Appl Microbiol Biotechnol 74:1145–1152

    Article  CAS  PubMed  Google Scholar 

  42. Itoh K, Kitade Y, Nakanishi M, Yatome C (2002) Decolorization of methyl red by a mixed culture of Bacillus sp. and Pseudomonas stutzeri. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:415–421

    Article  PubMed  Google Scholar 

  43. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos P, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  45. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, Mac-Gregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackenbrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. Int J Syst Bacteriol 49:705–724

    Article  CAS  PubMed  Google Scholar 

  46. Tiedje JM (2002) Shewanella—the environmentally versatile genome. Nat Biotechnol 20:1093–1094

    Article  CAS  PubMed  Google Scholar 

  47. Roldan MD, Blasco R, Caballero FJ, Castillo F (1998) Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol 169:36–42

    CAS  PubMed  Google Scholar 

  48. Song ZY, Zhou JT, Wang J, Yan B, Du CH (2003) Decolorization of azo dyes by Rhodobacter sphaeroides. Biotechol Lett 25:1815–1818

    Article  CAS  Google Scholar 

  49. Perez-Pantoja D, Donoso R, Junca H, Gonzalez B, Pieper DH (2009) Phylogenomics of aerobic bacterial degradation of aromatics. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1356–1397

    Google Scholar 

  50. Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64:576–587

    Article  CAS  PubMed  Google Scholar 

  51. Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104

    Article  CAS  PubMed  Google Scholar 

  52. Mandrich L, Merone L, Manco G (2010) Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Environ Technol 31:1115–1127

    Article  CAS  PubMed  Google Scholar 

  53. Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:859–881

    Article  CAS  PubMed  Google Scholar 

  54. Perez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  CAS  PubMed  Google Scholar 

  55. Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    Article  CAS  PubMed  Google Scholar 

  56. Suenaga H, Koyama Y, Miyakoshi M, Miyazaki R, Yano H, Sota M, Ohtsubo Y, Tsuda M, Miyazaki K (2009) Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. ISME J 3:1335–1348

    Article  CAS  PubMed  Google Scholar 

  57. Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JL, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Witzig R, Junca H, Hecht HJ, Pieper DH (2006) Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol 72:3504–3514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H (2008) Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiol Lett 285:111–121

    Article  CAS  PubMed  Google Scholar 

  62. Suenaga H, Mizuta S, Miyazaki K (2009) The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol 69:472–480

    Article  CAS  PubMed  Google Scholar 

  63. van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839

    Article  PubMed Central  PubMed  Google Scholar 

  64. Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2010) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4:278–285

    Google Scholar 

  65. Sipila TP, Keskinen AK, Akerman ML, Fortelius C, Haahtela K, Yrjala K (2008) High aromatic ring cleavage diversity in birch rhizosphere: PAH treatment specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME J 2:968–981

    Article  CAS  PubMed  Google Scholar 

  66. Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 75:6478–6487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

V.S. and D.M. acknowledge the financial support by the German Academic Exchange Service (DAAD) and Department of Biotechnology, New Delhi. M.Z and F.G.E. acknowledge the receipt of a scholarship from the CLIB Graduate Cluster “Industrial Biotechnology” co-financed by the Ministry of Innovation of North Rhine-Westphalia (Germany). The authors thank Dr. Asha Parmar, BRD School of Biosciences, Sardar Patel University, Gujarat, India for discussions and critical suggestions during work plan and manuscript preparation. The bioinformatics and technological support of the Bioinformatics and Genomics Platforms at the Center for Biotechnology (CeBiTec, Bielefeld University, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datta Madamwar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, V., Zakrzewski, M., Wibberg, D. et al. Taxonomic Profiling and Metagenome Analysis of a Microbial Community from a Habitat Contaminated with Industrial Discharges. Microb Ecol 66, 533–550 (2013). https://doi.org/10.1007/s00248-013-0253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0253-9

Keywords

Navigation