Skip to main content
Log in

Recombinant Horseradish Peroxidase C1A Immobilized on Hydrogel Matrix for Dye Decolorization and Its Mechanism on Acid Blue 129 Decolorization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, horseradish peroxidase C1A (HRP C1A) from Armoracia rusticana was expressed in Escherichia coli as an inclusion body. Subsequently, an active recombinant HRP C1A was obtained by refolding gradually using dilution-ultrafiltration. The recombinant HRP C1A was immobilized on agarose-chitosan hydrogel at 86.9 ± 2.5% of immobilization efficiency. After immobilization of the recombinant HRP C1A, the pH and temperature stability were improved and the reusability of the recombinant HPR C1A was achieved. The immobilized HRP C1A activity was retained above 80% after 6 cycles. The immobilized recombinant HRP C1A was used for the decolorization of four various dyes, including acid blue 129 (AB129), methyl blue (MB), methyl red (MR), and trypan blue (TB). The decolorization rates are all more than 70%, among which the decolorization effect of AB129 was the most significant (the decolorization rate was 76.3 ± 1.6%). Furthermore, a plausible decolorization pathway for AB129 was proposed based on the identified intermediates by ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS). This is the first report of the putative mechanism on the decolorization of AB129 by HRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Celebi, M., Kaya, M. A., Altikatoglu, M., & Yildirim, H. (2013). Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports. Applied Biochemistry and Biotechnology, 171(3), 716–730.

    CAS  PubMed  Google Scholar 

  2. Prigione, V., Tigini, V., Pezzella, C., Anastasi, A., Sannia, G., & Varese, G. C. (2008). Decolourisation and detoxification of textile effluents by fungal biosorption. Water Research, 42(12), 2911–2920.

    CAS  PubMed  Google Scholar 

  3. Fatima, M., Farooq, R., Lindström, R. W., & Saeed, M. (2017). A review on biocatalytic decomposition of azo dyes and electrons recovery. Journal of Molecular Liquids, 246, 275–281.

    CAS  Google Scholar 

  4. Kariyajjanavar, P., Narayana, J., & Nayaka, Y. A. (2011). Degradation of textile wastewater by electrochemical method. Journal of Waste Water Treatment & Analysis, 02(01), 2157–7587.

    Google Scholar 

  5. Pala, A., & Tokat, E. (2002). Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Research, 36(11), 2920–2925.

    CAS  PubMed  Google Scholar 

  6. Matto, M., & Husain, Q. (2009). Decolorization of textile effluent by bitter gourd peroxidase immobilized on concanavalin a layered calcium alginate-starch beads. Journal of Hazardous Materials, 164(2–3), 1540–1546.

    CAS  PubMed  Google Scholar 

  7. Amini, M., Arami, M., Mahmoodi, N. M., & Akbari, A. (2011). Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination, 267(1), 107–113.

    CAS  Google Scholar 

  8. Hadibarata, T., Yusoff, A. R. M., & Kristanti, R. A. (2011). Decolorization and metabolism of anthraquionone-type dye by laccase of white-rot fungi polyporus sp. S133. Water, Air, & Soil Pollution, 223(2), 933–941.

    Google Scholar 

  9. Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58(8), 1097–1105.

    CAS  PubMed  Google Scholar 

  10. Gholami-Borujeni, F., Mahvi, A. H., Naseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Research Journal of Chemistry and Environment, 15(2), 217–222.

    CAS  Google Scholar 

  11. Wasak, A., Drozd, R., Jankowiak, D., & Rakoczy, R. (2019). The influence of rotating magnetic field on bio-catalytic dye degradation using the horseradish peroxidase. Biochemical Engineering Journal, 147, 81–88.

    CAS  Google Scholar 

  12. Veitch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65(3), 249–259.

    CAS  PubMed  Google Scholar 

  13. Ferapontova, E. E., Grigorenko, V. G., Egorov, A. M., Börchers, T., Ruzgas, T., & Gorton, L. (2001). Direct electron transfer in the system gold electrode–recombinant horseradish peroxidases. Journal of Electroanalytical Chemistry, 509(1), 19–26.

    CAS  Google Scholar 

  14. Krainer, F. W., & Glieder, A. (2015). An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Applied Microbiology and Biotechnology, 99(4), 1611–1625.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Report, 24(5), 255–265.

    CAS  Google Scholar 

  16. Grigorenko, V. G., Andreeva, I. P., Rubtsova, M. Y., & Egorov, A. M. (2015). Recombinant horseradish peroxidase: production and analytical applications. Biochemistry, 80(4), 408–416.

    CAS  PubMed  Google Scholar 

  17. Felipe, L. V., & Ursula, R. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial Cell Factories, 3(1), 11–22.

    Google Scholar 

  18. Chang, Q., Huang, J., Ding, Y., & Tang, H. (2016). Catalytic oxidation of phenol and 2,4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4. Molecules, 21(8), 1044–1054.

    PubMed Central  Google Scholar 

  19. Yang, Y., Zhao, M., Yao, P., Huang, Y., Dai, Z., Yuan, H., & Ni, C. (2018). Comparative studies on enzyme activity of immobilized horseradish peroxidase in silica nanomaterials with three different shapes and methoxychlor degradation of vesicle-like mesoporous SiO(2) as carrier. Journal of Nanoscience Nanotechnology, 18(4), 2971–2978.

    CAS  PubMed  Google Scholar 

  20. Xie, X., Luo, P., Han, J., Chen, T., Wang, Y., Cai, Y., & Liu, Q. (2019). Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme and Microbial Technology, 122, 26–35.

    CAS  PubMed  Google Scholar 

  21. Muzzarelli, R. A. A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., & Paoletti, M. G. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 87(2), 995–1012.

    CAS  Google Scholar 

  22. Bilal, M., Asgher, M., Iqbal, H. M. N., Hu, H. B., & Zhang, X. C. (2017). Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT- Food Science and Technology, 80, 348–354.

    CAS  Google Scholar 

  23. Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.

    CAS  PubMed  Google Scholar 

  24. Iwata, H., Takagi, T., Amemiya, H., Shimizu, H., Yamashita, K., Kobayashi, K., & Akutsu, T. (1992). Agarose for a bioartificial pancreas. Journal of Biomedical Materials Research, 26(7), 967–977.

    CAS  PubMed  Google Scholar 

  25. Naatsaari, L., Krainer, F. W., Schubert, M., Glieder, A., & Thallinger, G. G. (2014). Peroxidase gene discovery from the horseradish transcriptome. BMC Genomics, 15(227), 1471–1487.

    Google Scholar 

  26. Chouyyok, W., Panpranot, J., Thanachayanant, C., & Prichanont, S. (2009). Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. Journal of Molecular Catalysis B: Enzymatic, 56(4), 246–252.

    CAS  Google Scholar 

  27. Yuan, X., Tian, G., Zhao, Y., Zhao, L., Wang, H., & Ng, T. B. (2016). Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from Pleurotus nebrodensis. Bioscience Reports, 36(4), 115–121.

    Google Scholar 

  28. Asad, S., Dabirmanesh, B., Ghaemi, N., Etezad, S. M., & Khajeh, K. (2013). Studies on the refolding process of recombinant horseradish peroxidase. Molecular Biotechnology, 54(2), 484–492.

    CAS  PubMed  Google Scholar 

  29. Yang, L., Liu, X., Zhou, N., & Tian, Y. (2019). Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads. Journal of Bioscience and Bioengineering, 127(1), 16–22.

    CAS  PubMed  Google Scholar 

  30. Rudolph, R., & Lilie, H. (1996). In vitro folding of inclusion body proteins. The FASEB Journal, 10(1), 49–56.

    CAS  PubMed  Google Scholar 

  31. Kiefhaber, T., Rudolph, R., Kohler, H. H., & Buchner, J. (1991). Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y), 9(9), 825–829.

    CAS  Google Scholar 

  32. Fang, M., & Huang, H. L. (2001). Advances in in vitro refolding of inclusion body proteins. Sheng Wu Gong Cheng Xue Bao, 17(6), 608–612.

    CAS  PubMed  Google Scholar 

  33. Sun, H. F., Yang, H., Huang, W. G., & Zhang, S. J. (2015). Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. Journal of Colloid and Interface Science, 450, 353–360.

    CAS  PubMed  Google Scholar 

  34. Nieto, M., Nardecchia, S., Peinado, C., Catalina, F., Abrusci, C., Gutiérrez, M. C., Ferrer, M. L., & del Monte, F. (2010). Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption. Soft Matter, 6(15), 3533.

    CAS  Google Scholar 

  35. Bilal, M., Rasheed, T., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2017). Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. International Journal of Biological Macromolecules, 105(Pt 1), 328–335.

    CAS  PubMed  Google Scholar 

  36. Bilal, M., Rasheed, T., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2018). Horseradish peroxidase immobilization by copolymerization into cross-linked polyacrylamide gel and its dye degradation and detoxification potential. International Journal of Biological Macromolecules, 113, 983–990.

    CAS  PubMed  Google Scholar 

  37. Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Immobilization of horseradish peroxidase on modified chitosan beads. International Journal of Biological Macromolecules, 46(1), 324–330.

    CAS  PubMed  Google Scholar 

  38. Bilal, M., Iqbal, H. M. N., Hu, H., Wang, W., & Zhang, X. (2017). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of The Total Environment at ScienceDirect, 575, 1352–1360.

    CAS  Google Scholar 

  39. Krajewska, B., & Piwowarska, Z. (2005). Free vs chitosan-immobilized urease: microenvironmental effects on enzyme inhibitions. Biocatalysis and Biotransformation, 23(3–4), 225–232.

    CAS  Google Scholar 

  40. You, B. H., Li, Q. T., Dong, H., Huang, T., Cao, X. D., & Liao, H. (2018). Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair. Journal of Materials Science & Technology, 34(6), 1016–1025.

    Google Scholar 

  41. Illeperuma, W. R., Rothemund, P., Suo, Z., & Vlassak, J. J. (2016). Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives. ACS Applied Materials & Interfaces, 8(3), 2071–2077.

    CAS  Google Scholar 

  42. Jamal, F., Qidwai, T., Singh, D., & Pandey, P. K. (2012). Biocatalytic activity of immobilized pointed gourd (Trichosanthes dioica) peroxidase-concanavalin a complex on calcium alginate pectin gel. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 125–131.

    CAS  Google Scholar 

  43. Wang, S., Liu, W., Zheng, J., & Xu, X. (2016). Immobilization of horseradish peroxidase on modified PAN-based membranes for the removal of phenol from buffer solutions. The Canadian Journal of Chemical Engineering, 94(5), 865–871.

    CAS  Google Scholar 

  44. Liu, J. Z., Wang, T. L., & Ji, L. N. (2006). Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. Journal of Molecular Catalysis B: Enzymatic, 41(3–4), 81–86.

    CAS  Google Scholar 

  45. Lade, H., Kadam, A., Paul, D., & Govindwar, S. (2015). Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI Journal, 14, 158–174.

    PubMed  PubMed Central  Google Scholar 

  46. Sekuljica, N. Z., Prlainovic, N. Z., Stefanovic, A. B., Zuza, M. G., Cickaric, D. Z., Mijin, D. Z., & Knezevic-Jugovic, Z. D. (2015). Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: optimization and kinetic study. Scientific World Journal, 10, 1155–1167.

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31472003 and 31600091), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (no. 111-2-06), and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Bing Guan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YJ., Xu, KZ., Ma, H. et al. Recombinant Horseradish Peroxidase C1A Immobilized on Hydrogel Matrix for Dye Decolorization and Its Mechanism on Acid Blue 129 Decolorization. Appl Biochem Biotechnol 192, 861–880 (2020). https://doi.org/10.1007/s12010-020-03377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03377-9

Keywords

Navigation