Skip to main content
Log in

Free and Ca-Alginate Beads Immobilized Horseradish Peroxidase for the Removal of Reactive Dyes: an Experimental and Modeling Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to remove the dyes Reactive Blue 221 (RB 221) and Reactive Blue 198 (RB 198) of synthetic effluent using the immobilized enzyme horseradish peroxidase (HRP) in Ca-alginate beads. Experimental parameters affecting the dye removal process such as the effect of pH, temperature, hydrogen peroxide concentration, mass capsules, and reuse were evaluated, and a numerical model of mass transfer was developed. A maximum removal of 93 and 75%, respectively, for the dyes RB 221 and RB 198, at pH 5.5 and temperature of 30 °C, concentration of hydrogen peroxide of 43.75 μM for dye RB 221 and 37.5 μM for the dye of RB 198 was obtained. A removal reaction of 180 min for RB 221 and 240 min for RB 198 was observed. Three reuse cycles of use of immobilized enzyme were achieved for both dyes. The numerical model proposed led to a good fit compared to experimental data. The HRP enzyme immobilized in Ca-alginate capsules showed a great potential for biotechnological applications, especially for the removal of reactive dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Absfinal :

Final absorbance (Ad)

Absinitial :

Initial absorbance (Ad)

\( {C}_m^{\exp } \) :

Experimental concentration from literature at point m

\( {C}_m^{num} \) :

Numerical concentration at point m

D :

Removal of dyes (%)

D eP :

Effective diffusivity by product (m2 s−1)

D eS :

Effective diffusivity by substrate (m2 s−1)

E :

Enzyme (mg L−1)

ε P :

Particle porosity (Ad)

ε r :

Reactor porosity (Ad)

ES:

Enzyme-substrate complex (mg L−1)

K mS :

Constant for substrate (mg L−1)

k 2 :

Rate constant (L mg−1 min−1)

K eq :

Constant of equilibrium (Ad)

k LS :

Mass transfer coefficient by substrate (m s−1)

k LP :

Mass transfer coefficient by product (m s−1)

K mP :

Michaelis-Menten constant for product (mg L−1)

m :

The sampling point

n :

Number of experimental points

μ max :

Maximum reaction rate (min−1)

P :

Product (mg L−1)

P P :

Concentration of product in the solid liquid phase (mg L−1)

P b :

Concentration of product in the bulk liquid phase (mg L−1)

r :

Radial coordinate (m2 s−1)

R :

Radius of particle (m)

S :

Substrate (mg L−1)

S b , o :

Initial concentration of substrate in the bulk phase (mg L−1)

S b :

Concentration of substrate in the liquid bulk phase (mg L−1)

ρ P :

Apparent density of the particles (kg m−3)

S P :

Concentration of substrate in the liquid solid phase (mg L−1)

t :

Time (min)

v :

Reaction rate (min−1)

References

  1. Burkinshaw, S. M., Howroyd, J., Kumar, N., & Kabambe, O. (2011). The wash-off of dyeings using interstitial water part 2: Bis(aminochlorotriazine) reactive dyes on cotton. Dyes and Pigments, 91, 134–144.

    Article  CAS  Google Scholar 

  2. Kunz, A., Peralta-Zamora, P., Moraes, S. G. D., & Durán, N. (2002). Novas tendências no tratamento de efluentes têxteis. Química Nova, 25, 78–82.

    Article  CAS  Google Scholar 

  3. Nguyen, T. A., & Juang, R.-S. (2013). Treatment of waters and wastewaters containing sulfur dyes: a review. Chemical Engineering Journal, 219, 109–117.

    Article  CAS  Google Scholar 

  4. Deveci, E. Ü., Dizge, N., Yatmaz, H. C., & Tansel, B. (2016). Degradation of recalcitrant textile dyes by coupling fungal and photocatalytic membrane reactors. CLEAN–Soil, Air, Water, 44, 1345–1351.

    Article  CAS  Google Scholar 

  5. Si, J., & Cui, B.-K. (2013). A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. Journal of Molecular Catalysis B: Enzymatic, 89, 6–14.

    Article  CAS  Google Scholar 

  6. Abdel-Aty, A. M., Hamed, M. B., Fahmy, A. S., & Mohamed, S. A. (2013). Comparison of the potential of Ficus sycomorus latex and horseradish peroxidases in the decolorization of synthetic and natural dyes. Journal of Genetic Engineering and Biotechnology, 11, 95–102.

    Article  Google Scholar 

  7. Chiong, T., Lau, S. Y., Lek, Z. H., Koh, B. Y., & Danquah, M. K. (2016). Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. Journal of Environmental Chemical Engineering, 4, 2500–2509.

    Article  CAS  Google Scholar 

  8. Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol turquoise blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105, 321–327.

    Article  CAS  Google Scholar 

  9. Ulson de Souza, S. M. A. G., Forgiarini, E., & Ulson de Souza, A. A. (2007). Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). Journal of Hazardous Materials, 147, 1073–1078.

    Article  CAS  Google Scholar 

  10. Wan, M. M., Gao, L., Chen, Z., Wang, Y. K., Wang, Y., & Zhu, J. H. (2012). Facile synthesis of new periodic mesoporous organosilica and its performance of immobilizing horseradish peroxidase. Microporous and Mesoporous Materials, 155, 24–33.

    Article  CAS  Google Scholar 

  11. Gholami-Borujeni, F., Mahvi, A. H., Naseri, S., Faramarzi, M. A., Nabizadeh, R., & Alimohammadi, M. (2011). Application of immobilized horseradish peroxidase for removal and detoxification of azo dye from aqueous solution. Research Journal of Chemistry and Environment, 15, 217–222.

    CAS  Google Scholar 

  12. Akhtar, S., Khan, A. A., & Husain, Q. (2005). Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere, 60, 291–301.

    Article  CAS  Google Scholar 

  13. Bilal, M., Iqbal, H. M., Hu, H., Wang, W. and Zhang, X. (2016). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of the Total Environment.

  14. Bilal, M., Asgher, M. and Iqbal, H. (2016). Polyacrylamide gel-entrapped fungal manganese peroxidase with enhanced catalytic, stability and reusability characteristics. Protein and peptide letters.

  15. Asgher, M., Kamal, S., & Iqbal, H. M. N. (2012). Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chemistry Central Journal, 6, 1.

    Article  Google Scholar 

  16. Iqbal, H. M. N., & Asgher, M. (2013). Decolorization applicability of sol–gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum. BMC Biotechnology, 13, 1.

    Article  Google Scholar 

  17. Muhammad Nasir Iqbal, H., & Asgher, M. (2013). Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04. Protein and Peptide Letters, 20, 591–600.

    Article  Google Scholar 

  18. Monier, M., Ayad, D. M., Wei, Y., & Sarhan, A. A. (2010). Immobilization of horseradish peroxidase on modified chitosan beads. International Journal of Biological Macromolecules, 46, 324–330.

    Article  CAS  Google Scholar 

  19. Jaiswal, N., Pandey, V. P., & Dwivedi, U. N. (2016). Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. International Journal of Biological Macromolecules, 86, 288–295.

    Article  CAS  Google Scholar 

  20. Wu, J. C. Y., Hutchings, C. H., Lindsay, M. J., Werner, C. J., & Bundy, B. C. (2015). Enhanced enzyme stability through site-directed covalent immobilization. Journal of Biotechnology, 193, 83–90.

    Article  CAS  Google Scholar 

  21. Preethi, S., Anumary, A., Ashokkumar, M., & Thanikaivelan, P. (2013). Probing horseradish peroxidase catalyzed degradation of azo dye from tannery wastewater. SpringerPlus, 2, 341.

    Article  Google Scholar 

  22. Karim, Z., Adnan, R., & Husain, Q. (2012). A β-cyclodextrin–chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. International Biodeterioration & Biodegradation, 72, 10–17.

    Article  CAS  Google Scholar 

  23. Malani, R. S., Khanna, S., & Moholkar, V. S. (2013). Sonoenzymatic decolourization of an azo dye employing immobilized horse radish peroxidase (HRP): a mechanistic study. Journal of Hazardous Materials, 256–257, 90–97.

    Article  Google Scholar 

  24. Kim, H. J., Suma, Y., Lee, S. H., Kim, J.-A., & Kim, H. S. (2012). Immobilization of horseradish peroxidase onto clay minerals using soil organic matter for phenol removal. Journal of Molecular Catalysis B: Enzymatic, 83, 8–15.

    Article  CAS  Google Scholar 

  25. Bilal, M., Asgher, M., Shahid, M., & Bhatti, H. N. (2016). Characteristic features and dye degrading capability of agar–agar gel immobilized manganese peroxidase. International Journal of Biological Macromolecules, 86, 728–740.

    Article  CAS  Google Scholar 

  26. Fuenzalida, J. P., Nareddy, P. K., Moreno-Villoslada, I., Moerschbacher, B. M., Swamy, M. J., Pan, S., Ostermeier, M., & Goycoolea, F. M. (2016). On the role of alginate structure in complexing with lysozyme and application for enzyme delivery. Food Hydrocolloids, 53, 239–248.

    Article  CAS  Google Scholar 

  27. Wang, Y., Chen, H., Wang, J., & Xing, L. (2014). Preparation of active corn peptides from zein through double enzymes immobilized with calcium alginate–chitosan beads. Process Biochemistry, 49, 1682–1690.

    Article  Google Scholar 

  28. Langlois, G., Dusseault, J., Bilodeau, S., Tam, S. K., Magassouba, D., & Hallé, J.-P. (2009). Direct effect of alginate purification on the survival of islets immobilized in alginate-based microcapsules. Acta Biomaterialia, 5, 3433–3440.

    Article  CAS  Google Scholar 

  29. Silva, M. C., Corrêa, A. D., Amorim, M. T. S. P., Parpot, P., Torres, J. A., & Chagas, P. M. B. (2012). Decolorization of the phthalocyanine dye Reactive Blue 21 by turnip peroxidase and assessment of its oxidation products. Journal of Molecular Catalysis B: Enzymatic, 77, 9–14.

    Article  CAS  Google Scholar 

  30. Cristóvão, R. O., Tavares, A. P. M., Ribeiro, A. S., Loureiro, J. M., Boaventura, R. A. R., & Macedo, E. A. (2008). Kinetic modelling and simulation of laccase catalyzed degradation of reactive textile dyes. Bioresource Technology, 99, 4768–4774.

    Article  Google Scholar 

  31. Al-Muftah, A. E., & Abu-Reesh, I. M. (2005). Effects of simultaneous internal and external mass transfer and product inhibition on immobilized enzyme-catalyzed reactor. Biochemical Engineering Journal, 27, 167–178.

    Article  CAS  Google Scholar 

  32. Mayer, D. A., de Souza, A. A. U., Fontana, E., & de Souza, S. M. A. U. (2016). Kinetic study of biodegradation of BTX compounds in mono- and multicomponent systems in reactor with immobilized biomass. Bioprocess and Biosystems Engineering, 39, 1441–1454.

    Article  CAS  Google Scholar 

  33. Matto, M., & Husain, Q. (2009). Decolorization of direct dyes by immobilized turnip peroxidase in batch and continuous processes. Ecotoxicology and Environmental Safety, 72, 965–971.

    Article  CAS  Google Scholar 

  34. Dawkar, V. V., Jadhav, U. U., Telke, A. A., & Govindwar, S. P. (2009). Peroxidase from Bacillus sp. VUS and its role in the decolorization of textile dyes. Biotechnology and Bioprocess Engineering, 14, 361.

    CAS  Google Scholar 

  35. Silva, M. C., Torres, J. A., Vasconcelos de Sá, L. R., Chagas, P. M. B., Ferreira-Leitão, V. S., & Corrêa, A. D. (2013). The use of soybean peroxidase in the decolourization of Remazol brilliant blue R and toxicological evaluation of its degradation products. Journal of Molecular Catalysis B: Enzymatic, 89, 122–129.

    Article  CAS  Google Scholar 

  36. Bilal, M., Iqbal, H. M. N., Hussain Shah, S. Z., Hu, H., Wang, W., & Zhang, X. (2016). Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. Journal of Environmental Management, 183(Part 3), 836–842.

    Article  CAS  Google Scholar 

  37. Shoabargh, S., Karimi, A., Dehghan, G., & Khataee, A. (2014). A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2/polyurethane for removal of a dye. Journal of Industrial and Engineering Chemistry, 20, 3150–3156.

    Article  CAS  Google Scholar 

  38. Jung, K.-W., Hwang, M.-J., Jeong, T.-U., Chau, D. M., Kim, K., & Ahn, K.-H. (2016). Entrapment of powdered drinking water treatment residues in calcium-alginate beads for fluoride removal from actual industrial wastewater. Journal of Industrial and Engineering Chemistry, 39, 101–111.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq for the financial support given by way of the scholarship, LCME and Central Analysis of EQA at the Federal University of Santa Catarina (UFSC) by analyses of SEM and texture, respectively. Also would like thank Malwee and Toyobo do Brasil for supplying the dyes and HRP enzyme, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, S., Mayer, D.A., de Oliveira, D. et al. Free and Ca-Alginate Beads Immobilized Horseradish Peroxidase for the Removal of Reactive Dyes: an Experimental and Modeling Study. Appl Biochem Biotechnol 182, 1290–1306 (2017). https://doi.org/10.1007/s12010-017-2399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2399-2

Keywords

Navigation