Skip to main content
Log in

Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation

  • Young Scholars in Earth & Environmental Sciences
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research evaluated the feasibility of using vetiver plantlets (Vetiveria zizanioides (L.) Nash) on a floating platform with aeration to degrade phenol (500 mg/L) in illegally dumped industrial wastewater (IDIWW). The IDIWW sample was from the most infamous illegal dumping site at Nong Nae subdistrict, Phanom Sarakham district, Chachoengsao province, Thailand. Laboratory results suggested that phenol degradation by vetiver involves two phases: Phase I, phytopolymerization and phyto-oxidation assisted by root-produced peroxide (H2O2) and peroxidase (POD), followed by phase II, a combination of phase I with enhanced rhizomicrobial degradation. The first 360–400 h of phenol degradation were dominated by phytopolymerization and phyto-oxidation yielding particulate polyphenols (PPP) or particulate organic matter (POM) as by-products, while phenol decreased to around 145 mg/L. In Phase II, synergistically, rhizomicrobial growth was ∼100-folds greater on the roots of the vetiver plantlets than in the IDIWW and participated in the microbial degradation of phenol at this lower phenol concentration, increasing the phenol degradation rate by more than three folds. This combination of phytochemical and rhizomicrobiological processes eliminated phenol in IDIWW in less than 766 h (32 days), while without the vetiver plantlets, phenol degradation by aerated microbial degradation alone may require 235 days. To our knowledge, this is the first that systematically reveals the complete phenol degradation mechanism by vetiver plantlets in real aerated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37:139–144

    Article  CAS  Google Scholar 

  • Al-Khalid T, El-Naas M (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42:1631–1690

    Article  CAS  Google Scholar 

  • Bahraminia M, Zarei M, Ronaghi A, Ghasemi-Fasaei R (2016) Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. Int J Phytoremediation 18(7):730–737

  • Bekins BA, Warren E, Godsy EM (1998) A comparison of zero-order, first-order, and Monod biotransformation models. Groundwater 36:261–268

    Article  CAS  Google Scholar 

  • Bootkote C (2013) Root of hazardous industrial waste problems; PCD does not have authority while DIW cannot identify the culprit, TCIJ. TCIJ, Bangkok

    Google Scholar 

  • Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. Int J Phytoremediation 8:273–284

    Article  CAS  Google Scholar 

  • Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J, Kästner M, Kuschk P (2016) Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15:844–860

    Article  CAS  Google Scholar 

  • Da Silva ML, Kamath R, Alvarez PJ (2006) Effect of simulated rhizodeposition on the relative abundance of polynuclear aromatic hydrocarbon catabolic genes in a contaminated soil. Environ Toxicol Chem 25:386–391

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2010) Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Int J Phytoremediation 13:47–60

    Article  Google Scholar 

  • De Araujo BS, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environ Pollut 117:329–335

    Article  Google Scholar 

  • de Araujo BS, de Oliveira JO, Machado SS, Pletsch M (2004) Comparative studies of the peroxidases from hairy roots of Daucus carota, Ipomoea batatas, and Solanum aviculare. Plant Sci 167:1151–1157

    Article  Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microb 52:248–260

    Article  CAS  Google Scholar 

  • EPA (2002) Toxicological review of phenol. US.EPA, Washington D.C.

    Google Scholar 

  • Esplugas S, Gimenez J, Contreras S, Pascual E, Rodrı’guez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  • Garrity G, Boone DR, Castenholz RW (eds) (2001) Bergey’s manual of systematic bacteriology. Springer, New York, NY, p. 722

    Google Scholar 

  • Ghioureliotis M, Nicell JA (2000) Toxicity of soluble products from the peroxidase-catalysed polymerization of substituted phenolic compounds. J Chem Technol Biotechnol 75:98–106

    Article  CAS  Google Scholar 

  • González PS, Maglione GA, Giordana M, Paisio CE, Talano MA, Agostini E (2012) Evaluation of phenol detoxification by Brassica napus hairy roots, using Allium cepa test. Environ Sci Pollut Res 19:482–491

    Article  Google Scholar 

  • González PS, Ontañon OM, Armendariz AL, Talano MA, Paisio CE, Agostini E (2013) Brassica napus hairy roots and rhizobacteria for phenolic compounds removal. Environ Sci Pollut Res 20:1310–1317

    Article  Google Scholar 

  • Gopalakrishnan G, Burken JG, Werth CJ (2009a) Lignin and lipid impact on sorption and diffusion of trichloroethylene in tree branches for determining contaminant fate during plant sampling and phytoremediation. Environ Sci Technol 43:5732–5738

    Article  CAS  Google Scholar 

  • Gopalakrishnan G, Werth CJ, Negri MC (2009b) Mass recovery methods for trichloroethylene in plant tissue. Environ Toxicol Chem 28:1185–1190

    Article  CAS  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47

    Article  CAS  Google Scholar 

  • Hill GA, Robinson CW (1975) Substrate inhibition kinetics: phenol degradation by pseudomonas putida. Biotechnol Bioeng 17:1599–1615

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Huang D-Y, Zhou S-G, Chen Q, Zhao B, Yuan Y, Zhuang L (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172:647–653

    Article  CAS  Google Scholar 

  • Hussain A, Dubey SK, Kumar V (2015) Kinetic study for aerobic treatment of phenolic wastewater. Water Resour Indus 11:81–90

    Article  Google Scholar 

  • Ibáñez SG, Alderete LGS, Medina MI, Agostini E (2012) Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res 19:1555–1562

    Article  Google Scholar 

  • Ichinose D, Yamamoto M (2011) On the relationship between the provision of waste management service and illegal dumping. Resour Energy Econ 33:79–93

    Article  Google Scholar 

  • Kamran MA, Syed JH, Eqani SA, Munis MF, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283

    Article  CAS  Google Scholar 

  • Kietkwanboot A, Tran THM, Suttinun O (2015) Simultaneous dephenolization and decolorization of treated palm oil mill effluent by oil palm fiber-immobilized Trametes Hirsuta strain AK 04. Water Air Soil Pollut 226:345

    Article  Google Scholar 

  • Klibanov AM, Tu T-M, Scott KP (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221:259–261

    Article  CAS  Google Scholar 

  • Kurnik K, Treder K, Skorupa-Kłaput M, Tretyn A, Tyburski J (2015) Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut 226:254

    Article  Google Scholar 

  • Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R (2010a) Efficiency of phenol biodegradation by planktonic pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water Res 44:5021–5031

    Article  CAS  Google Scholar 

  • Kurzbaum E, Zimmels Y, Kirzhner F, Armon R (2010b) Removal of phenol in a constructed wetland system and the relative contribution of plant roots, microbial activity and porous bed. Water Sci Technol 62:1327–1334

    Article  CAS  Google Scholar 

  • Lee GF, Morris JC (1962) Kinetics of chlorination of phenol-chlorophenolic tastes and odors. Int J Air Wat Poll 6:419–431

    CAS  Google Scholar 

  • Lei W, Xuanzhen J (2008) Unusual catalytic effects of iron salts on phenol degradation by glow discharge plasma in aqueous solution. J Hazard Mater 161:926–932

    Google Scholar 

  • Massari M, Monzini P (2004) Dirty businesses in Italy: a case-study of illegal trafficking in hazardous waste. Global Crime 6:285–304

    Article  Google Scholar 

  • Moormann H, Kuschk P, Stottmeister U (2002) The effect of rhizodeposition from helophytes on bacterial degradation of phenolic compounds. Acta Biotechnol 22:107–112

    Article  CAS  Google Scholar 

  • Nielsen PH, Bjerg PL, Nielsen P, Smith P, Christensen TH (1995) In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer. Environ Sci Technol 30:31–37

    Article  Google Scholar 

  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  Google Scholar 

  • Ondo Zue Abaga N, Dousset S, Mbengue S, Munier-Lamy C (2014) Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 113:42–47

    Article  CAS  Google Scholar 

  • Poon K, Hon KL, Huang JJ (2011) The phytotoxicity of 2, 4, 6-Trichlorophenol and phenol to local agricultural plant species in China. WIT Trans Ecol Environ 152:203–213

    CAS  Google Scholar 

  • Pradeep NV, Anupama S, Navya K, Shalini HN, Idris M, Hampannavar US (2015) Biological removal of phenol from wastewaters: a mini review. App Water Sci 5:105–112

    Article  CAS  Google Scholar 

  • Rentz JA, Alvarez PJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Pollut 136:477–484

    Article  CAS  Google Scholar 

  • Roongtanakiat N (2009) Vetiver phytoremediation for heavy metal decontamination. Office of the Royal Development Projects Board, Bangkok

    Google Scholar 

  • Roongtanakiat N, Tangruangkiat S, Meesat R (2007) Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. Sci Asia 33:397–403

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Shibata A, Inoue Y, Katayama A (2006) Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils. Sci Total Environ 367:979–987

    Article  CAS  Google Scholar 

  • Singh S, Melo JS, Eapen S, D’Souza SF (2006) Phenol removal using Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J Biotechnol 3:43–49

    Article  Google Scholar 

  • Singh S, Melo JS, Eapen S, D’Souza SF (2008) Potential of vetiver (Vetiveria zizanioides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf 71:671–676

    Article  CAS  Google Scholar 

  • Soonsuk D (2013) Diclosure of 40 toxic-waste contaminated area in the eastern Thailand, Thaipublica. Thaipublica, Bangkok

    Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  Google Scholar 

  • Talano MA, Busso DC, Paisio CE, González PS, Purro SA, Medina MI, Agostini E (2012) Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environ Sci Pollut Res 19:2202–2211

    Article  CAS  Google Scholar 

  • Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z, Min Q (1998) Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase. Chemosphere 37:1571–1577

    Article  CAS  Google Scholar 

  • Triassi M, Alfano R, Illario M, Nardone A, Caporale O, Montuori P (2015) Environmental pollution from illegal waste disposal and health effects: a review on the “triangle of death”. Int J Environ Res Public Health 12:1216–1236

    Article  Google Scholar 

  • Truong PN, Baker D (1998) Vetiver grass system for environmental protection. Office of the Royal Development Projects Board, Bangkok

    Google Scholar 

  • Truong P, Hart B (2001) Vetiver system for wastewater treatment, the PRVN secretariat office. Office of the Royal Development Projects Board (ORDPB), Bangkok

    Google Scholar 

  • Truong P, Van TT, Pinners E (2007) Vetiver system applications: technical reference manual. The Vetiver Network International, San Antonio, Texas

    Google Scholar 

  • Truong P, Van TT, Pinners E (2008) Vetiver grass-plant propagation, vetiver systems application—a technical reference manual. CreateSpace Independent Publishing Platform, Sydney, p. 100

    Google Scholar 

  • US EPA (2010) Chapter 1, Part 141, National primary drinking water regulation. In: US.EPA (Hrsg.), Title 40-Protection of Environment, pp 341–565

  • Vaishnav DD, Babeu L, Korthals ET (1989) Effect of microbial concentration on biodegradation rates of phenols. J Ind Microbiol Biotechnol 4:307–313

    CAS  Google Scholar 

  • Valipour A, Ahn Y-H (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23:180–197

    Article  CAS  Google Scholar 

  • van Schie PM, Young LY (2000) Biodegradation of phenol: mechanisms and applications. Biorem J 4:1–18

    Article  Google Scholar 

  • Veeramachaneni DN, Palmer JS, Amann RP (2001) Long-term effects on male reproduction of early exposure to common chemical contaminants in drinking water. Hum Reprod 16:979–987

    Article  CAS  Google Scholar 

  • Wright H, Nicell JA (1999) Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresour Technol 70:69–79

    Article  CAS  Google Scholar 

  • Zhang L, Zhao J, Cui N, Dai Y, Kong L, Wu J, Cheng S (2015) Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier. Environ Sci Pollut Res 23(8):7437–7443

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Office of the Royal Development Projects Board through Naresuan University (Grant nos. R2558A092, R2557A057, and R2555B098). We are deeply thankful for excellent advice and continuous support from our expert consultants, including Dr. Weerachai Nanakorn, Ms. Suwanna Pasiri, and Dr. Pittayakorn Limthong. We deeply appreciate the trust from the Nong Nae community who welcomed our research team like a family. We appreciate Chachoengsao Development Station, Land Development Department, Ministry of Agriculture and Cooperatives, Thailand, for supporting vetiver grass for our research. Last but not least, we value the King of Thailand Vetiver Award (2015) and The Vetiver Network International (TVNI) Award (2015) granted to this research by the Chaipattana Foundation (Thailand) and the TVNI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanapon Phenrat or Siriwan Wichai.

Additional information

Responsible Editor: Gerald Thouand

Submitted to Environmental Science Pollution Research Special Issue on “Young Scholars in Earth and Environmental Sciences”

Electronic supplementary material

ESM 1

(DOCX 5270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phenrat, T., Teeratitayangkul, P., Prasertsung, I. et al. Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation. Environ Sci Pollut Res 24, 13235–13246 (2017). https://doi.org/10.1007/s11356-016-7707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7707-9

Keywords

Navigation