Skip to main content
Log in

Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose

  • Recent Advances in Chemistry and the Environment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is a homopolymer and it is distinguished from plant-based cellulose by its unique properties such as high purity, high crystallinity, high water-holding capacity, and good biocompatibility. Microalgae are unicellular, photosynthetic microorganisms and are known to have high protein, starch, and oil content. In this study, Chlorella vulgaris was evaluated as source of glucose for the production of BC. To increase the starch content of algae the effect of nutrient starvation (nitrogen and sulfur) and light deficiency were tested in a batch assay. The starch contents (%) were 5.27 ± 0.04, 7.14 ± 0.18, 5.00 ± 0.08, and 1.35 ± 0.04 for normal cultivation, nitrogen starvation, sulfur starvation, and dark cultivation conditions, respectively. The performance of enzymatic and acidic methods was compared for the starch hydrolysis. This study demonstrated for the first time that acid hydrolysate of algal starch can be used to substitute glucose in the fermentation medium of Komagataeibacter hansenii for BC production. Glucose was used as a control for BC production. BC production yields on dry weight basis were 1.104 ± 0.002 g/L and 1.202 ± 0.005 g/L from algae-based glucose and glucose, respectively. The characterization of both BCs produced from glucose and algae-based glucose was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. The results have shown that the structural characteristics of algae-based BC were comparable to those of glucose-based BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Biopolymers Online 5

  • Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae: novel highly efficient starch producers. Biotechnol Bioeng 108:4

    Article  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Culture collection of algae and protozoa, Scottish Marine Institute, UK http://www.ccap.ac.uk/media/documents/3N_BBM_V.pdf (accessed 28 December 2013)

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential 5 productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Ertürk MD, Saçan MT (2013) Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris. Ecotoxicol Environ Saf 90:61–68

    Article  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier transform—materials analysis, DrSalih (Ed.), ISBN: 978–953–51-0594-7, InTech. Available from: http://www.intechopen.com/books/fourier-transform-materials-analysis/fourier-transform-infraredspectroscopy-for-natural-fibres (accessed 15 December 2015)

  • Ha JH, Shah N, Ul-Islam M, Khan T, Park JK (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem 46:1717–1723

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem J 58:345–352

    Article  CAS  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol 135:157–165

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  • Indrarti L, Yudianti R (2012) Development of bacterial cellulose/activated carbon composites prepared by in situ and cast-drying methods. Asian Trans Basic Appl Sci 2(5):21–24

    Google Scholar 

  • Jeon BH, Choi JA, Kim HC, Hwang JH, Abou-Shanab RA, Dempsey BA, Regan JM, Kim JR (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6:37

    Article  CAS  Google Scholar 

  • Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292

    Article  CAS  Google Scholar 

  • Kline MS (1999) Infrared spectroscopy: a key to organic structure, Yale University: Yale-New Haven Teachers Institute, http://www.yale.edu/ynhti/curriculum/units/1999/5/99.05.07.x.html (accessed 16 June 2015)

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    Article  CAS  Google Scholar 

  • Kurniawan H, Ye Y-S, Kuo W-H, Lai J-T, Wang M-J, Liu H-S (2013) Improvement of biofouling resistance on bacterial cellulose membranes. Biochem Eng J 78:138–145

    Article  CAS  Google Scholar 

  • Lammens TM, Franssen MCR, Scott EL, Sanders JPM (2012) Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy 44:168–181

    Article  CAS  Google Scholar 

  • Laurens LML, Dempster TA, Jones HDT, Wolfrum EJ, Wychen SV, McAllister JSP, Rencenberger M, Parchert KJ, Gloe LM (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84:1879–1887

    Article  CAS  Google Scholar 

  • Li Y, Tian C, Tian H, Zhang J, He X, Ping W, Lei H (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 96:1479–1487

    Article  CAS  Google Scholar 

  • Lin SP, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    Article  CAS  Google Scholar 

  • Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose—Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14:1084

    Article  Google Scholar 

  • Lu M, Guan X, Wei D (2011) Removing Cd2+ by composite adsorbent Nano-Fe3O4/bacterial cellulose. Chem Res Chin Univ 27(6):1031–1034

    Article  CAS  Google Scholar 

  • Lu Z, Zhang Y, Chi Y, Xu N, Yao W, Sun B (2011) Effects of alcohols on bacterial cellulose production by Acetobacter xylinum 186. World J Microbiol Biotechnol 27:2281–2285

    Article  CAS  Google Scholar 

  • Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7:33–38

    Google Scholar 

  • Mohite BV, Patil SV (2013) A novel biomaterial: bacterial cellulose & its new era applications. Biotechnol Appl Biochem. doi:10.1002/bab.1148

    Google Scholar 

  • Mondal IH (2013) Mechanism of structure formation of microbial cellulose during nascent stage. Cellulose 20:1073–1088

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utilization 3(4):89–100

    Google Scholar 

  • Rodrigues MA, Silva Bon EP (2011) Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Res Article ID 405603:1–5

    Article  Google Scholar 

  • Safi MC (2013) Microalgae biorefinery: proposition of a fractionation process. L’universite de Toulouse, Doctorat de

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286. doi:10.1016/j.copbio.2010.03.005

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292

    Article  CAS  Google Scholar 

  • Ul-Islam M, Ha JH, Khan T, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92:360–366

    Article  CAS  Google Scholar 

  • Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47:789–807

    Article  CAS  Google Scholar 

  • Watanabe K, Hori Y, Tabuchi M, Morinaga Y, Yoshinaga F, Horii F, Sugiyama J, Okano T (1994) Proceedings of ‘94 Cellulose R&D, 1st Annual Meeting of the Cellulose Society of Japan. Cellulose Society of Japan, ed. Tokyo, 45–50

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery—from biofuels to natural products. Biosour Technol 166–174

  • Zhong C, Zhang G-C, Liu M, Zheng X-T, Han P-P, Jia S-R (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 97:6189–6199

    Article  CAS  Google Scholar 

  • Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489

    Article  CAS  Google Scholar 

  • Zhu H, Jia S, Yang H, Jia Y, Yan L, Li J (2011) Preparation and application of bacterial cellulose sphere: a novel biomaterial. Biotechnol Biotechnol Equip 25:1

    Article  Google Scholar 

Download references

Acknowledgments

The support of this study by the Boğaziçi University Research Fund (No: 8502) is acknowledged. The authors would also like to thank Aziz Akın Denizci and Guldem Utkan for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Türker Saçan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzyol, H.K., Saçan, M.T. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ Sci Pollut Res 24, 11154–11162 (2017). https://doi.org/10.1007/s11356-016-7049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7049-7

Keywords

Navigation