Skip to main content
Log in

Arsenopyrite weathering under conditions of simulated calcareous soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mining activities release arsenopyrite into calcareous soils where it undergoes weathering generating toxic compounds. The research evaluates the environmental impacts of these processes under semi-alkaline carbonated conditions. Electrochemical (cyclic voltammetry, chronoamperometry, EIS), spectroscopic (Raman, XPS), and microscopic (SEM, AFM, TEM) techniques are combined along with chemical analyses of leachates collected from simulated arsenopyrite weathering to comprehensively examine the interfacial mechanisms. Early oxidation stages enhance mineral reactivity through the formation of surface sulfur phases (e.g., S n 2−/S0) with semiconductor properties, leading to oscillatory mineral reactivity. Subsequent steps entail the generation of intermediate siderite (FeCO3)-like, followed by the formation of low-compact mass sub-micro ferric oxyhydroxides (α, γ-FeOOH) with adsorbed arsenic (mainly As(III), and lower amounts of As(V)). In addition, weathering reactions can be influenced by accessible arsenic resulting in the formation of a symplesite (Fe3(AsO4)3)-like compound which is dependent on the amount of accessible arsenic in the system. It is proposed that arsenic release occurs via diffusion across secondary α, γ-FeOOH structures during arsenopyrite weathering. We suggest weathering mechanisms of arsenopyrite in calcareous soil and environmental implications based on experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achiba WB, Gabteni N, Lakhdar A, Du Laing G, Verloo M, Jedidi N, Gallali T (2009) Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agric Ecosyst Environ 130:156–163. doi:10.1016/j.agee.2009.01.001

    Article  CAS  Google Scholar 

  • Aguilar J, Dorronsoro C, Fernández E, Fernández J, García I, Martín F, Simón M (2004) Soil pollution by a pyrite mine spill in Spain: evolution in time. Environ Pollut 132:395–401. doi:10.1016/j.envpol.2004.05.028

    Article  CAS  Google Scholar 

  • Al TM, Martin CJ, Blowes DW (2000) Carbonate-mineral/water interactions in sulfide-rich mine tailings. Geochim Cosmochim Acta 64:3933–3948. doi:10.1016/S0016-7037(00)00483-X

    Article  CAS  Google Scholar 

  • Allison JD, Brown DS, Novogradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems; version 3.11. EPA/600/3-91/021, Washington, DC, USA

  • Almeida CM, Giannetti BF (2003) The electrochemical behavior of pyrite–pyrrhotite mixtures. J Electroanal Chem 553:27–34. doi:10.1016/S0022-0728(03)00254-7

    Article  CAS  Google Scholar 

  • Armienta MA, Villasenor G, Rodriguez R, Ongley LK, Mango H (2001) The role of arsenic-bearing rocks in groundwater pollution at Zimapan Valley, Mexico. Environ Geol 40:571–581. doi:10.1007/s002540000220

    Article  CAS  Google Scholar 

  • ASTM (1999) Standard test method for shake extraction of solid waste with water D3987-85; West Conshocken

  • ASTM (2001) Standard test method for accelerated weathering of solid materials using a modified humidity cell D5744-96; West Conshocken

  • Ayame A, Uchida K, Iwataya M, Miyamoto M (2002) X-ray photoelectron spectroscopic study on α- and γ-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Appl Catal A 227:7–17. doi:10.1016/S0926-860X(01)00918-8

    Article  CAS  Google Scholar 

  • Bard AJ, Parson R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Decker, New York

    Google Scholar 

  • Basu A, Schreiber ME (2013) Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. J Hazard Mater 262:896–904. doi:10.1016/j.jhazmat.2012.12.027

    Article  CAS  Google Scholar 

  • Bersani D, Lottici PP, Montenero A (1999) Micro‐Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360. doi:10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C

    Article  CAS  Google Scholar 

  • Bluteau MC, Becze L, Demopoulos GP (2009) The dissolution of scorodite in gypsum-saturated waters: evidence of Ca–Fe–AsO4 mineral formation and its impact on arsenic retention. Hydrometallurgy 97:221–227. doi:10.1016/j.hydromet.2009.03.009

    Article  CAS  Google Scholar 

  • Brock KJ (1972) Genesis of Garnet Hill Skarn, Calaveras County, California. Geol Soc Am Bull 83:3391–3404. doi:10.1130/0016-7606(1972)83[3391:GOGHSC]2.0.CO;2

    Article  CAS  Google Scholar 

  • Buckley AN, Walker GW (1998) The surface composition of arsenopyrite exposed to oxidizing environments. Appl Surf Sci 35:227–240

    Article  Google Scholar 

  • Buckley AN, Woods R (1987) The surface oxidation of pyrite. Appl Surf Sci 27:437–452

    Article  CAS  Google Scholar 

  • Burgot JL (2012) Ionic equilibria in analytical chemistry. New York, Springer

    Book  Google Scholar 

  • Cabrera-Sierra R, Hallen JM, Vazquez-Arenas J, Vazquez G, Gonzalez I (2010) EIS characterization of tantalum and niobium oxide films. J Electroanal Chem 638:51–58. doi:10.1016/j.jelechem.2009.10.021

    Article  CAS  Google Scholar 

  • Cabrera-Sierra R, Vazquez-Arenas J, Cardoso S, Luna-Sánchez RM, Trejo MA, Marín-Cruz J, Hallen JM (2011) Analysis of the formation of Ta2O5 passive films in acid media through mechanistic modeling. Electrochim Acta 56:8040–8047. doi:10.1016/j.electacta.2011.05.078

    CAS  Google Scholar 

  • Caldeira CL, Ciminelli VST, Dias A, Osseo-Asare K (2003) Pyrite oxidation in alkaline solutions: nature of the product layer. Int J Miner Process 72:373–386. doi:10.1016/S0301-7516(03)00112-1

    Article  CAS  Google Scholar 

  • Caldeira CL, Ciminelli VS, Osseo-Asare K (2010) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim Cosmochim Acta 74:1777–1789. doi:10.1016/j.ca.2009.12.014

    Article  CAS  Google Scholar 

  • Castro-Larragoitia J, Kramar U, Puchelt H (1997) 200 years of mining activities at La Paz/San Luis Potosí/Mexico-consequences for environment and geochemical exploration. J Geochem Explor 58:81–91. doi:10.1016/S0375-6742(96)00054-4

    Article  CAS  Google Scholar 

  • Chappell DA, Craw D (2002) Geological analogue for circumneutral pH mine tailings: implications for long-term storage, Macraes Mine, Otago, New Zealand. Appl Geochem 17:1105–1114. doi:10.1016/S0883-2927(02)00002-1

    Article  CAS  Google Scholar 

  • Chen Y, Ahsan H (2004) Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health 94:741–744. doi:10.2105/AJPH.94.5.741

    Article  Google Scholar 

  • Cheng H, Hu Y, Luo J, Xu B, Zhao J (2008) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26. doi:10.1016/j.hazmat.2008.10.070

    Article  CAS  Google Scholar 

  • Chiprés JA, Salinas JC, Castro-Larragoitia J, Monroy M (2008) Geochemical mapping of major and trace elements in soils from the Altiplano Potosino, Mexico: a multi-scale comparison. Geochem Explor Environ Anal 8:279–290. doi:10.1144/1467-7873/08-181

    Article  Google Scholar 

  • Choo CO, Lee JK (2002) Mineralogical and geochemical controls on the formation of schwertmannite and goethite in the wetland at Dalseong tungsten mine, Korea. Geosci J 6:281–287. doi:10.1007/BF03020613

    Article  Google Scholar 

  • Ciminelli VST, Osseo-Asare K (1995) Kinetics of pyrite oxidation in sodium carbonate solutions. Metall Mater Trans B 26:209–218. doi:10.1007/BF02660961

    Article  Google Scholar 

  • Cisneros-González I, Oropeza-Guzmán MT, González I (2000) An electrochemical study of galena concentrate in perchlorate medium at pH 2.0: the influence of chloride ions. Electrochim Acta 45:2729–2741. doi:10.1016/S0013-4686(00)00392-3

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, method no: 2320B-acidity or total alkalinity in water, 20th edn. Port City Press, Baltimore

    Google Scholar 

  • Constantin CA, Chiriţă P (2013) Oxidative dissolution of pyrite in acidic media. J Appl Electrochem 43:659–666. doi:10.1007/s10800-013-0557-y

    Article  CAS  Google Scholar 

  • Costa MC, Do Rego AB, Abrantes LM (2002) Characterization of a natural and an electro-oxidized arsenopyrite: a study on electrochemical and X-ray photoelectron spectroscopy. Int J Miner Process 65:83–108. doi:10.1016/S0301-7516(01)00059-X

    Article  CAS  Google Scholar 

  • Courtin-Nomade A, Bril H, Neel C, Lenain JF (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguialès, Aveyron, France. Appl Geochem 18:395–408. doi:10.1016/S0883-2927(02)00098-7

    Article  CAS  Google Scholar 

  • Craw D, Chappell D, Nelson M, Walrond M (1999) Consolidation and incipient oxidation of alkaline arsenopyrite-bearing mine tailings, Macraes Mine, New Zealand. Appl Geochem 14:485–498. doi:10.1016/S0883-2927(98)00063-8

    Article  CAS  Google Scholar 

  • Craw D, Koons PO, Chappell DA (2002) Arsenic distribution during formation and capping of an oxidised sulphidic minesoil, Macraes mine, New Zealand. J Geochem Explor 76:13–29. doi:10.1016/S0375-6742(02)00202-9

    Article  CAS  Google Scholar 

  • Craw D, Falconer D, Youngson JH (2003) Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem Geol 199:71–82. doi:10.1016/S0009-2541(03)00117-7

    Article  CAS  Google Scholar 

  • Cruz R, Bertrand V, Monroy M, González I (2001a) Effect of sulfide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach. Appl Geochem 16:803–819. doi:10.1016/S0883-2927(00)00054-8

    Article  CAS  Google Scholar 

  • Cruz R, Méndez BA, Monroy M, González I (2001b) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640. doi:10.1016/S0883-2927(01)00035-X

    Article  CAS  Google Scholar 

  • Cruz R, González I, Monroy M (2005) Electrochemical characterization of pyrrhotite reactivity under simulated weathering conditions. Appl Geochem 20:109–121. doi:10.1016/j.apgeochem.2004.07.007

    Article  CAS  Google Scholar 

  • Das S, Hendry MJ (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol 290:101–108. doi:10.1016/j.chemgeo.2011.09.001

    Article  CAS  Google Scholar 

  • De Faria DLA, Silva SV, De Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878. doi:10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

    Article  Google Scholar 

  • De Levie R (2003) The Henderson-Hasselbalch equation: its history and limitations. J Chem Educ 80:146. doi:10.1021/ed080p146

    Article  Google Scholar 

  • Déscostes M, Beaucaire C, Mercier F, Savoye F, Sow J, Zuddas P (2002) Effect of carbonate ions on pyrite (FeS2) dissolution. Bull Soc Geol France 173:265–270. doi:10.2113/173.3.265

    Article  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi:10.1021/es030309t

    Article  CAS  Google Scholar 

  • Dorronsoro C, Martin F, Ortiz I, García M, Simón E, Fernández E, Aguilar J, Fernández J (2002) Migration of trace elements from pyrite tailings in carbonate soils. J Environ Qual 31:829–835. doi:10.2134/jeq2002.8290

    Article  CAS  Google Scholar 

  • Drzyzga M, Szade J, Deniszczyk J, Michalecki T (2003) Electronic structure of rare earth bismuthides. J Phys Condens Matter 15:3701. doi:10.1088/0953-8984/15/22/305

    Article  CAS  Google Scholar 

  • Eggleston CM, Ehrhardt JJ, Stumm W (1996) Surface structural controls on pyrite oxidation kinetics: an XPS-UPS, STM, and modeling study. Am Mineral 81:1036–1056

    Article  CAS  Google Scholar 

  • El Jaroudi O, Picquenard E, Demortier A, Leliuer JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S2 2− and S3 2− anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143

    Article  Google Scholar 

  • El Jaroudi O, Picquenard E, Demotier A, Leliuer JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S4 2− and S5 2− anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x

    Article  CAS  Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199. doi:10.1080/10643389509388477

    Article  CAS  Google Scholar 

  • Evangelou VP, Seta AK, Holt A (1998) Potential role of bicarbonate during pyrite oxidation. Environ Sci Technol 32:2084–2091. doi:10.1021/es970829m

    Article  CAS  Google Scholar 

  • Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T (2008) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy 90:92–102. doi:10.1016/j.hydromet.2007.09.012

    Article  CAS  Google Scholar 

  • García-Meza JV, Contreras-Aganza MI, Castro-Larragoitia J, Lara RH (2011) Growth of photosynthetic biofilms and Fe, Pb, Cu, and Zn speciation in unsaturated columns with calcareous mine tailings from arid zones. Appl Environ Soil Sci. doi:10.1155/2011/732984

    Google Scholar 

  • García-Meza JV, Lara RH, Navarro-Contreras HR (2012) Application of Raman spectroscopy to the biooxidation analysis of sulfide minerals. Int J Spectrosc. doi:10.1155/2012/501706

    Google Scholar 

  • Gas’kova OL, Shironosova GP, Bortnikova SB (2008) Thermodynamic estimation of the stability field of bukovskyite, an iron sulfoarsenate. Geochem Int 46:85–89. doi:10.1134/S0016702908010072

    Article  Google Scholar 

  • Gehring AU, Hofmeister AM (1994) The transformation of lepidocrocite during heating: a magnetic and spectroscopic study. Clay Clay Miner 42:409–415

    Article  CAS  Google Scholar 

  • Giannetti BF, Almeida CMVB, Bonilla SH (2006) Electrochemical kinetic study of surface layer growth on natural pyrite in acid medium. Colloids Surf A 272:130–138. doi:10.1016/j.colsurfa.2005.07.018

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216. doi:10.1006/jcis.2000.7295

    Article  CAS  Google Scholar 

  • Grift B, Griffioen J (2008) Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals. J Contam Hydrol 96:48–68

    Article  CAS  Google Scholar 

  • Gu GH, Sun XJ, Hu KT, Li JH, Qiu GZ (2012) Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Metals Soc China 22:1250–1254. doi:10.1016/S1003-6326(11)61312-5

    Article  CAS  Google Scholar 

  • Hamilton IC, Woods R (1981) An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry. J Electroanal Chem 118:327–343. doi:10.1016/S0022-0728(81)80551-7

    Article  CAS  Google Scholar 

  • Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič L, Kučerová G, Radková A, Šottník P, Vozár J (2013) Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environ Sci Pollut Res 11:7627–7642. doi:10.1007/s11356-013-1581-5

    Article  CAS  Google Scholar 

  • Hossner LR, Doolittle JJ (2003) Iron sulfide oxidation as influenced by calcium carbonate application. J Environ Qual 32:773–780. doi:10.2134/jeq2003.7730

    Article  CAS  Google Scholar 

  • Jiménez-Cárceles FJ, Álvarez-Rogel J, Conesa HR (2008) Trace element concentrations in saltmarsh soils strongly affected by wastes from metal sulphide mining areas. Water Air Soil Pollut 188:283–295. doi:10.1007/s11270-007-9544-4

    Article  CAS  Google Scholar 

  • Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191. doi:10.1016/j.apgeochem.2004.04.008

    Article  CAS  Google Scholar 

  • Jönsson J, Jönsson J, Lövgren L (2006) Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl Geochem 21:437–445. doi:10.1016/j.apgeochem.2005.12.008

    Article  CAS  Google Scholar 

  • Jurjovec J, Ptacek CJ, Blowes DW (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim Cosmochim Acta 66:1511–1523. doi:10.1016/S0016-7037(01)00874-2

    Article  CAS  Google Scholar 

  • Karthe S, Szargan R, Suoninen E (1993) Oxidation of pyrite surfaces: a photoelectron spectroscopic study. Appl Surf Sci 72:157–170. doi:10.1016/0169-4332(93)90007-X

    Article  CAS  Google Scholar 

  • Kelsall GH, Yin Q, Vaughan DJ, England KER, Brandon NP (1999) Electrochemical oxidation of pyrite (FeS2) in aqueous electrolytes. J Electroanal Chem 471:116–125. doi:10.1016/S0022-0728(99)00261-2

    Article  CAS  Google Scholar 

  • Kim MJ, Nriagu J, Haack S (2000) Carbonate ions and arsenic dissolution by groundwater. Environ Sci Technol 34:3094–3100. doi:10.1021/es990949p

    Article  CAS  Google Scholar 

  • Klein CB, Leszczynska J, Hickey C, Rossman TG (2007) Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol 222:289–297. doi:10.1016/j.taap.2006.12.033

    Article  CAS  Google Scholar 

  • Knipe SW, Mycroft JR, Pratt AR, Nesbitt HW, Bancroft GM (1995) X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim Cosmochim Acta 59:1079–1090. doi:10.1016/0016-7037(95)00025-U

    Article  CAS  Google Scholar 

  • Kossoff D, Hudson-Edwards KA, Dubbin WE, Alfredsson M, Geraki T (2012) Cycling of As, P, Pb and Sb during weathering of mine tailings: implications for fluvial environments. Mineral Mag 76:1209–1228. doi:10.1180/minmag.2012.076.5.14

    Article  CAS  Google Scholar 

  • Koura N, Kohara S, Takeuchi K, Takahashi S, Curtiss LA, Grimsditch M, Saboungi ML (1996) Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure. J Mol Struct 382:163–169. doi:10.1016/0022-2860(96)09314-3

    Article  CAS  Google Scholar 

  • Krause E, Ettel VA (1988) Solubility and stability of scorodite, FeAsO4 · 2H2O: new data and further discussion. Am Mineral 73:850–854

    CAS  Google Scholar 

  • Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2013) Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. J Hazard Mater 262:1187–1195. doi:10.1016/j.jhazmat.2012.07.006

    Article  CAS  Google Scholar 

  • Langmuir D (1997) Environmental geochemistry. Ed. Prentice Hall, USA, p 73

    Google Scholar 

  • Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70:2942–2956. doi:10.1016/j.gca.2006.03.006

    Article  CAS  Google Scholar 

  • Lara RH, Monroy MG, Mallet M, Dossot M, González MA, Cruz R (2015a) An experimental study of iron sulfides weathering under simulated calcareous soil conditions. Environ Earth Sci 73:1849–1869. doi:10.1007/s12665-014-3540-y

    Article  CAS  Google Scholar 

  • Lara RH, Vazquez-Arenas JG, Ramos-Sanchez G, Galvan M, Lartundo-Rojas L (2015b) Experimental and theoretical analysis accounting for differences of pyrite and chalcopyrite oxidative behaviors for prospective environmental and (Bio)leaching applications. J Phys Chem C 19:18364–18379. doi:10.1021/acs.jpcc.5b05149

  • Lázaro I, Martínez-Medina N, Rodríguez I, Arce E, González I (1995) The use of carbon pate electrodes with non-conducting binder for the study of minerals: chalcopyrite. Hydrometallurgy 38:275–285. doi:10.1016/0304-386X(94)00070-J

    Article  Google Scholar 

  • Lehner S, Ciobanu M, Savage K, Cliffel DE (2008) Electrochemical impedance spectroscopy of synthetic pyrite doped with As, Co, and Ni. J Electrochem Soc 155:61–70. doi:10.1149/1.2885103

    Article  CAS  Google Scholar 

  • Lin CC, Liu LG (1997) Post-aragonite phase transitions in strontianite and cerussite-a high-pressure Raman spectroscopic study. J Phys Chem Solids 58:977–987. doi:10.1016/S0022-3697(96)00201-6

    Article  CAS  Google Scholar 

  • Lin HK, Say WC (1999) Study of pyrite oxidation by cyclic voltammetric, impedance spectroscopic and potential step techniques. J Appl Electrochem 29:987–994. doi:10.1023/A:1003578728263

    Article  CAS  Google Scholar 

  • Lin HT, Wang MC, Seshaiah K (2008) Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost. Chemosphere 71:742–749. doi:10.1016/j.chemosphere.2007.10.022

    Article  CAS  Google Scholar 

  • Liu Y, Dang Z, Wu P, Lu J, Shu X, Zheng L (2011a) Influence of ferric iron on the electrochemical behavior of pyrite. Ionics 17:169–176. doi:10.1007/s11581-010-0492-4

    Article  CAS  Google Scholar 

  • Liu Y, Dang Z, Lu G, Wu P, Feng C, Yi X (2011b) Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Miner Eng 24:833–838. doi:10.1016/j.mineng.2011.03.002

    Article  CAS  Google Scholar 

  • Lu P, Zhu C (2011) Arsenic Eh–pH diagrams at 25 C and 1 bar. Environ Earth Sci 62:1673–1683. doi:10.1007/s12665-010-0652-x

    Article  CAS  Google Scholar 

  • Majzlan J, Grevel KD, Navrotsky A (2003) Thermodynamics of Fe oxides: part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am Mineral 88:855–859

    Article  CAS  Google Scholar 

  • Martín F, Diez M, García I, Simón M, Dorronsoro C, Iriarte A, Aguilar J (2007) Weathering of primary minerals and mobility of major elements in soils affected by an accidental spill of pyrite tailing. Sci Total Environ 378:49–52. doi:10.1016/j.scitotenv.2007.01.031

    Article  CAS  Google Scholar 

  • Martín F, García I, Díez M, Sierra M, Simon M, Dorronsoro C (2008) Soil alteration by continued oxidation of pyrite tailings. Appl Geochem 23:1152–1165. doi:10.1016/j.apgeochem.2007.11.012

    Article  CAS  Google Scholar 

  • Martínez-Sánchez MJ, Navarro MC, Pérez-Sirvent C, Marimón J, Vidal J, García-Lorenzo ML, Bech J (2008) Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean). J Geochem Explor 96:171–182. doi:10.1016/j.gexplo.2007.04.006

    Article  CAS  Google Scholar 

  • Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122. doi:10.1016/j.envpol.2012.12.025

    Article  CAS  Google Scholar 

  • McGuire MM, Jallad KN, Ben-Amotz D, Hamers RJ (2001) Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Appl Surf Sci 178:105–115. doi:10.1016/S0169-4332(01)00303-8

    Article  CAS  Google Scholar 

  • Mehmood A, Hayat R, Wasim M, Akhtar MS (2009) Mechanisms of arsenic adsorption in calcareous soils. J Agric Biol Sci 1:59–65

    Google Scholar 

  • Meléndez AM, Arroyo R, González I (2010) On the reactivity of sulfosalts in cyanide aqueous media: structural, bonding and electronic aspects. Chem Phys Chem 11:2879–2886. doi:10.1002/cphc.201000187

    Google Scholar 

  • Mikhlin YL (2000) Reactivity of pyrrhotite surfaces: an electrochemical study. Phys Chem Chem Phys 2:5672–5677. doi:10.1039/B005373M

    Article  CAS  Google Scholar 

  • Mikhlin YL, Romanchenko AS (2007) Gold deposition on pyrite and the common sulfide minerals: an STM/STS and SR-XPS study of surface reactions and Au nanoparticles. Geochim Cosmochim Acta 71:5985–6001. doi:10.1016/j.gca.2007.10.001

    Article  CAS  Google Scholar 

  • Mikhlin YL, Tomashevich YV, Pashkov GL, Okotrub AV, Asanov IP, Mazalov LN (1998) Electronic structure of the non-equilibrium iron-deficient layer of hexagonal pyrrhotite. Appl Surf Sci 125:73–84. doi:10.1016/S0169-4332(97)00386-3

    Article  CAS  Google Scholar 

  • Mikhlin YL, Tomashevich YV, Asanov IP, Okotrub AV, Varnek VA, Vyalikh DV (2004) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions. Appl Surf Sci 225:395–409. doi:10.1016/j.apsusc.2003.10.030

    Article  CAS  Google Scholar 

  • Molinari A, Ayora C, Marcaccio M, Guadagnini L, Sanchez-Vila X, Guadagnini A (2014) Geochemical modeling of arsenic release from a deep natural solid matrix under alternated redox conditions. Environ Sci Pollut Res 21:1628–1637. doi:10.1007/s11356-013-2054-6

    Article  CAS  Google Scholar 

  • Moreno-Medrano ED, Casillas N, Cruz R, Lara-Castro RH, Bárcena-Soto M, Larios-Durán ER (2011) Impedance study during anodic oxidation of native galena in a highly concentrated xanthate solution. Int J Electrochem Sci 6:6319–6331

    CAS  Google Scholar 

  • Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68:2080–2084. doi:10.1016/j.chemosphere.2007.02.015

    Article  CAS  Google Scholar 

  • Mullet M, Demoisson F, Bernard H, Michot L, Vantelon D (2006) Aqueous Cr(VI) reduction by pyrite: speciation and characterization of the solid phases by X-ray photoelectron, Raman and X-ray absorption spectroscopies. Geochim Cosmochim Acta 71:3257–3271. doi:10.1016/j.gca.2006.09.008

    Article  CAS  Google Scholar 

  • Murciego A, Alvarez-Ayuso E, Pellitero E, Rodríguez M, García-Sánchez A, Tamayo A, Rubin J (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 186:590–601. doi:10.1016/j.jhazmat.2010.11.033

    Article  CAS  Google Scholar 

  • Murphy R, Strongin DR (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64:1–45. doi:10.1016/j.surfrep.2008.09.002

    Article  CAS  Google Scholar 

  • Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152

    Article  CAS  Google Scholar 

  • Myneni SC, Traina SJ, Waychunas GA, Logan TJ (1998) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochim Cosmochim Acta 62:3285–3300. doi:10.1016/S0016-7037(98)00222-1

    Article  CAS  Google Scholar 

  • Nan Z, Zhao C (2000) Heavy metal concentrations in gray calcareous soils of Baiyin region, Gansu province, PR China. Water Air Soil Pollut 118:131–142. doi:10.1023/A:1005135618750

    Article  CAS  Google Scholar 

  • Nava D, González I, Leinen D, Ramos-Barrado JR (2008) Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite. Electrochim Acta 53:4889–4899. doi:10.1016/j.electacta.2008.01.088

    Article  CAS  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193. doi:10.1016/j.gexplo.2007.04.011

    Article  CAS  Google Scholar 

  • Nesbitt HW, Muir IJ (1994) X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim Cosmochim Acta 54:4667–4679

    Article  Google Scholar 

  • Nesbitt HW, Muir IJ (1998) Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Miner Petrol 62:123–144. doi:10.1007/BF01173766

    Article  CAS  Google Scholar 

  • Nesbitt HW, Muir IJ, Pratt AR (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochim Cosmochim Acta 59:1773–1786. doi:10.1016/0016-7037(95)00081-A

    Article  CAS  Google Scholar 

  • Nesbitt HW, Bancroft GM, Pratt AR, Scaini MJ (1998) Sulfur and iron surface states on fractured pyrite surfaces. Am Miner 83:1067–1076

    Article  CAS  Google Scholar 

  • Nesbitt H, Scaini M, Hoechst H, Brancroft GM, Schaufuss AG, Szargan R (2000) Synchrotron XPS evidence for Fe2+–S and Fe3+–S surface species on pyrite fracture surfaces and their 3d electronic states. Am Mineral 85:850–857

    Article  CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1988) Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim Cosmochim Acta 52:1077–1085

    Article  CAS  Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1990) Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim Cosmochim Acta 54:395–402

    Article  CAS  Google Scholar 

  • Nowak P, Laajalehto K (2000) Oxidation of galena surface-an XPS study of the formation of sulfoxy species. Appl Surf Sci 157:101–111. doi:10.1016/S0169-4332(99)00575-9

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155. doi:10.1021/es050889p

    Article  CAS  Google Scholar 

  • Paktunc D, Dutrizac J, Gertsman V (2008) Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim Cosmochim Acta 72:2649–2672. doi:10.1016/j.gca.2008.03.012

    Article  CAS  Google Scholar 

  • Pappu A, Saxena M, Asolekar SR (2006) Jarosite characteristics and its utilisation potentials. Sci Total Environ 359:232–243. doi:10.1016/j.scitotenv.2005.04.024

    Article  CAS  Google Scholar 

  • Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Colloids Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030

    Article  CAS  Google Scholar 

  • Perfetti E, Pokrovski GS, Ballerat-Busserolles K, Majer V, Gibert F (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350°C and 300 bar, and revised thermodynamic properties of, and iron sulfarsenide minerals. Geochim Cosmochim Acta 72:713–731. doi:10.1016/j.gca.2007.11.017

    Article  CAS  Google Scholar 

  • Pratt AR, Muir IJ, Nesbitt HW (1994) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta 58:827–841

    Article  CAS  Google Scholar 

  • Pratt AR, McIntyre NS, Splinter SJ (1998) Deconvolution of pyrite, marcasite and arsenopyrite XPS spectra using the maximum entropy method. Surf Sci 396:266–272. doi:10.1016/S0039-6028(97)00675-4

    Article  CAS  Google Scholar 

  • Raposo JC, Zuloaga O, Sanz J, Villanueva U, Crea P, Etxebarria N, Madariaga JM (2006) Analytical and thermodynamical approach to understand the mobility/retention of arsenic species from the river to the estuary. The Bilbao case study. Mar Chem 99:42–51. doi:10.1016/j.marchem.2005.02.004

    Article  CAS  Google Scholar 

  • Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152. doi:10.1023/B:WATE.0000015350.14520.c1

    Article  CAS  Google Scholar 

  • Richardson S, Vaughan DJ (1989) Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineral Mag 53:223–229

    Article  CAS  Google Scholar 

  • Robins RG (1981) The solubility of metal arsenates. Metall Trans B 12:103–109. doi:10.1007/BF02674763

    Article  Google Scholar 

  • Romero FM, Armienta MA, Villaseñor G, González JL (2006) Mineralogical constraints on the mobility of arsenic in tailings from Zimapán, Hidalgo, Mexico. Int J Environ Pollut 26:23–40. doi:10.1504/IJEP.2006.009097

    Article  CAS  Google Scholar 

  • Romero FM, Nunez L, Gutiérrez ME, Armienta MA, Ceniceros-Gómez AE (2011) Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco Mining Area, Mexico. Arch Environ Contam Toxicol 60:191–203. doi:10.1007/s00244-010-9544-z

    Article  CAS  Google Scholar 

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin SMD (2012) Mineralogy of Fe-precipitates and their role in metal retention from an acid mine drainage site in India. Mine Water Environ 31:344–352. doi:10.1007/s10230-012-0203-7

    Article  CAS  Google Scholar 

  • Samadi A, Gilkes RJ (1999) Phosphorus transformations and their relationships with calcareous soil properties of Southern Western Australia. Soil Sci Soc Am J 63:809–815. doi:10.2136/sssaj1999.634809x

    Article  CAS  Google Scholar 

  • Sandström Å, Shchukarev A, Paul J (2005) XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Miner Eng 18:505–515. doi:10.1016/j.mineng.2004.08.004

    Article  CAS  Google Scholar 

  • Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloids Surf A 133:269–278. doi:10.1016/S0927-7757(97)00200-8

    Article  CAS  Google Scholar 

  • Savage KS, Bird DK, O'Day PA (2005) Arsenic speciation in synthetic jarosite. Chem Geol 215:473–498. doi:10.1016/j.chemgeo.2004.06.046

    Article  CAS  Google Scholar 

  • Schaufuß AG, Nesbitt HW, Kartio I, Laajalehto K, Bancroft GM, Szargan R (1998a) Incipient oxidation of fractured pyrite surfaces in air. J Electron Spectrosc Relat Phenom 96:69–82. doi:10.1016/S0368-2048(98)00237-0

    Article  Google Scholar 

  • Schaufuss AG, Nesbitt HW, Kartio I, Laajalehto K, Bancroft GM, Szargan R (1998b) Reactivity of surface chemical states on fractured pyrite. Surf Sci 411:321–325. doi:10.1016/S0039-6028(98)00355-0

    Article  CAS  Google Scholar 

  • Schaufuss AG, Nesbitt HW, Scaini MJ, Hoechst H, Bancroft MG, Szargan R (2000) Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen. Am Miner 85:1754–1766

    Article  CAS  Google Scholar 

  • Sengupta AK (2001) Environmental separation of heavy metals: engineering processes. CRC Press

  • Shi J, Li T, Feng M, Mao Z, Wang C (2006) Study of the corrosion from the printing plates of ‘Guan Zi’ by Raman spectroscopy. J Raman Spectrosc 37:836–840. doi:10.1002/jrs.1511

    Article  CAS  Google Scholar 

  • Shim SH, Duffy TS (2001) Raman spectroscopy of Fe2O3 to 62 GPa. Am Miner 87:318–326

    Article  Google Scholar 

  • Singhania S, Wang Q, Filippou D, Demopoulos GP (2006) Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions. Metall Mater Trans B 37:189–197. doi:10.1007/BF02693148

    Article  Google Scholar 

  • Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier and Members of the Avoidance and Remediation Working Group of the Acid Drainage Technology Initiative (1998) A handbook of technologies for avoidance and remediation of acid mine drainage, the national mine land reclamation center. National Mine Land Reclamation Center PBS, Virginia, pp 10–11

    Google Scholar 

  • Sojdehee M, Rasa I, Nezafati N, Abedini MV, Madani N, Zeinedini E (2015) Probabilistic modeling of mineralized zones in Daralu copper deposit (SE Iran) using sequential indicator simulation. Arab J Geosci. doi:10.1007/s12517-015-1828-1

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural water, 3rd edn. Wiley, New York

    Google Scholar 

  • Takahashi M, Noda M, Okuyama M (2003) Photoelectron spectroscopic studies of bismuth-excess strontium bismuth tantalate thin films and their high-pressure-O2-annealing effects. J Appl Phys 94:6729–6734. doi:10.1063/1.1621737

    Article  CAS  Google Scholar 

  • Thomas JE, Skinner WM, Smart RS (2003) A comparison of the dissolution behavior of troilite with other iron (II) sulfides; implications of structure. Geochim Cosmochim Acta 67:831–843. doi:10.1016/S0016-7037(02)01146-8

    Article  CAS  Google Scholar 

  • Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0

    Article  CAS  Google Scholar 

  • Turcotte RE, Benner AM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–919. doi:10.1016/0022-0728(93)80088-Y

    Article  CAS  Google Scholar 

  • Velasquez P, Leinen D, Pascual J, Ramos-Barrado JR, Grez P, Gomez H, Cordova R (2005) A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. J Phys Chem B 109:4977–4988. doi:10.1021/jp048273u

    Article  CAS  Google Scholar 

  • Villenuéve M (2002) Évaluation du comportement géochimique á long terme de rejetsminiers à faible potentiel de génération d’acide á l’aide d’essais cinétiques. Msc Thesis, Université de Montreal

  • Walker DJ, Clemente R, Roig A, Bernal MP (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ Pollut 122:303–312. doi:10.1016/S0269-7491(02)00287-7

    Article  CAS  Google Scholar 

  • Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676. doi:10.1016/j.gca.2005.12.010

    Article  CAS  Google Scholar 

  • Walsh A, Watson GW, Payne DJ, Edgell RG, Guo J, Glans PA, Learmonth T, Smith KE (2006) Electronic structure of the α and δ phases of Bi2O3: a combined ab initio and x-ray spectroscopy study. Phys Rev B 73:235104. doi:10.1103/PhysRevB.73.235104

    Article  CAS  Google Scholar 

  • Wang Y, Morin G, Ona-Nguema G, Brown GE Jr (2014) Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite. Environ Sci Technol 48:14282–14290. doi:10.1021/es5033629

    Article  CAS  Google Scholar 

  • Xia L, Yin C, Dai S, Qiu G, Chen X, Liu J (2010) Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor. J Ind Microbiol Biotechnol 37:289–295. doi:10.1007/s10295-009-0672-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research work is greatly appreciated from CONACYT (Grants 2012-183230 and 2013-205416). The authors thank Jacques Lambert (Université de Lorraine), Erasmo Mata (IG-UASLP), and Francisco Galindo (IM-UASLP) for their XPS analyses and massive mineral electrodes preparation and construction, respectively. The authors also thank Pr. Marcos G. Monroy (IM-UASLP) for invaluable support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René H. Lara.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, R.H., Velázquez, L.J., Vazquez-Arenas, J. et al. Arsenopyrite weathering under conditions of simulated calcareous soil. Environ Sci Pollut Res 23, 3681–3706 (2016). https://doi.org/10.1007/s11356-015-5560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5560-x

Keywords

Navigation