Skip to main content
Log in

Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air

Oxidationszustand und Spezifikation sekundärer Produkte auf Pyrit und Arsenkies nach Reaktion mit Grubenwässern und Luft

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Three morphologically distinct generations of Fe-oxyhydroxides were identified on pyrite surfaces reacted with unsaturated zone waters of a waste rock pile from the CON Mine (Northwest Territories, Canada). The paragenetic sequence includes an early mottled coating and a late massive (featureless) coating, separated by a generation of Fe(III)-oxyhydroxide of crystalline habit. Gypsum and halite precipitation were the last paragenetic events, and indicate intense wetting and drying in the unsaturated zone of the waste rock pile prior to collection.

Fe 2p X-ray photoelectron spectra (XPS) of tarnished pyrite surfaces indicate at least two distinct secondary Fe(III)-oxyhydroxide phases, and combined with O 1s spectra, indicate ferrihydrite, goethite, hematite or maghemite. Minor As(IV) and As(III) are incorporated into these coatings.

Fresh arsenopyrite surfaces reacted with air for 14 days, 16 months and 25 years develop exceptionally thin oxidized secondary coatings no more than about 50 A thick. XPS Fe 2p, O 1s and As 3d spectra indicate that the overlayer is composed of Fe(III)-hydroxides, arsenate (AsO[OH]3 or FeAsO4), and reduced arsenic species, including arsenite (As[OH]3 or FeAsO3). The abundance of reduced arsenic species is explained by diffusion of reduced As (e.g. As) from the unoxidized interior of the mineral to the near-surface where it reacts with oxidants. Continuous supply of reduced As from the bulk, and progressive oxidation of arsenic in the near-surface, result in an effective passivating layer. Whereas these oxidized coatings passivate the surface against airoxidation, aqueous solutions cause extensive leaching of arsenopyrite surfaces beneath the oxidized coatings. Apparently, the coatings offer little protection against leaching by oxidizing aqueous solutions, perhaps because the oxidized overlayer is compromised by dissolution of acidic and ferric arsenite and arsenate salts.

Zusammenfassung Drei morphologisch definierte Generationen von Eisen-Oxyhydroxyden wurden auf den Oberflächen von Pyrit nachgewiesen, der mit Wässern der ungesättigten Zone einer Abraumhalde der CON Mine (Nordwest-Territorium, Kanada) reagiert hat. Die paragenetische Abfolge umfaßt einen frühen fleckigen und einen späten massiven Überzug der durch eine Generation von Fe(III)-Oxyhydroxyden von kristallinem Habitus getrennt werden. Gips und Steinsalz Ausfällung waren die letzten paragenetischen Stadien und weisen auf intensive Befeuchtung und Trocknung in der ungesättigen Zone der Abraumhalden vor der Probennahme hin.

Fe2p Röntgenfotoelektronspektren (XPS) von angelaufenen Pyritoberflächen weisen auf zumindest zwei unterscheidbare sekundäre Fe(III)-Oxyhydroxydphasen hin; in Kombination mit O is Spektren zeigen sie auch, daß Ferrihydrit, Goethit, Hämatit oder Maghemit vorliegen. Geringere Mengen von As(IV) und As(111) liegen in diesen Überzügen vor.

Frische Arsenkiesoberflächen, die mit Luft für 14 Tage, 16 Monate und 25 Jahre reagiert haben, entwickeln außerordentlich dünne sekundäre Oxydationsfilme, die nicht mehr als 50 A dick sind. XPS, Fe 2p, O l s und As 3d Spektren zeigen, daß diese aus Fe(III)-Hydroxyden, Arsenat (AsO[OH]3 oder FeAsO4), und reduzierten Arsenphasen, die Arsenit (As[OH[]3 oder FeAsO3) umfassen, bestehen. Die weite Verbreitung von reduzierten Arsenphasen wird durch die Diffusion von reduziertem As (e.g. As°) aus dem nichtoxidierten Teil des Minerals in den Oberflächenbereichen erklärt, dort reagiert es mit Oxidanzien. Kontinuierliche Zufuhr von reduziertem As aus dem Haldenmaterial und progressive Oxidation des Arsens nahe der Oberläche führt zur Bildung einer effektiv passivierenden Schicht. Während diese oxidierten Schichten die Oberfläche gegen Luftoxidation passivieren, verursachen wäßrige Lösungen umfangreiches Leaching von Arsenkiesoberflächen unter den oxidierten Schichten. Offensichtlich bieten diese Schichten geringen Schutz gegen Leaching durch oxidierende wäßrige Lösungen, wahrscheinlich weil die oxidierte Überschicht durch Auflösung von sauren sowie Ferritischen Arsenit- und Arsenatsalzen beschädigt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azcue JM, Nriagu JO (1995) Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J Geochem Explor 52: 81–89

    Google Scholar 

  • Azcue JM, Murdoch A, Rosa F, Hall GEM, Jackson TA, Reynoldson T (1995) Trace elements in water, sediments, porewater and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. J Geochem Explor 52: 25–34

    Google Scholar 

  • Berner RA (1978) Rate control of mineral dissolution under earth surface conditions. Am J Sci 278: 1235–1252

    Google Scholar 

  • Buckley AN, Woods R (1987) The surface oxidation of pyrite. Appl Surf Sci 27: 437–452

    Google Scholar 

  • Buckley AN, Walker W (1988) The surface composition of arsenopyrite exposed to oxidizing environments. Appl Surf Sci 35: 227–240

    Google Scholar 

  • Flinn BJ, McIntyre NS (1990) Studies of the UV/ozone oxidation of GaAs using angleresolved X-ray photoelectron spectroscopy. Surf Interface Analysis 15: 19–26

    Google Scholar 

  • Knipe SW Mycroft JR, Prattt AR, Nesbitt HW, Bancroft GM (1995) X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim Cosmochim Acta 59: 1079–1090

    Google Scholar 

  • Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nording C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA. Physica Scripta 1: 286–298

    Google Scholar 

  • McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49: 1521–1529

    Google Scholar 

  • McIntyre NS, Davidson RD, Mycroft JR (1996) Quantitative XPS measurements of some oxides, sulphides and complex minerals. Surf Interface Anal 24: 591–596

    Google Scholar 

  • Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters. Springer, New York, 268pp

    Google Scholar 

  • Mycroft JR, Bancroft GM, McIntyre JVS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292: 139–152

    Google Scholar 

  • Mycroft JR, Nesbitt HW, Pratt AR (1995) X-ray photoelectron and Auger electron spectroscopy of air oxidized pyrrhotite: distribution of oxidized species with depth. Geochim Cosmochim Acta 59: 721–733

    Google Scholar 

  • Nesbitt HW, Muir IJ (1994) X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim Cosmochim Acta 58: 4667–4679

    Google Scholar 

  • Nesbitt HW, Muir II, Pratt AR (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochim Cosmochim Acta 59: 1773–1786

    Google Scholar 

  • Pratt AR, Muir IJ, Nesbitt HW (1994) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta 58: 827–841

    Google Scholar 

  • Pratt AR, Nesbitt HW, Muir IJ (1994) Generation of acids in mine waste: oxidative leaching of pyrrhotite in dilute H2SO4 solutions (pH 3.0). Geochim Cosmochim Acta 58:5147–5159

    Google Scholar 

  • Richardson S, Vaughan DJ (1989) Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineral Mag 53: 223–229

    Google Scholar 

  • Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc. Related Phenom 8: 129–138

    Google Scholar 

  • Seah MP (1990) Quantification of AES and XPS. In:Briggs D, Seah MP (eds) Practical surface analysis, vol 1. Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, pp 201–255

    Google Scholar 

  • Seach MP, Dench WA (1979) Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surface Interface Anal 1: 2–11

    Google Scholar 

  • Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5: 4709–4714

    Google Scholar 

  • Tanuma S, Powell CJ, Penn DR (1991) Calculations of electron inelastic mean free paths 111. SIA, Surf Interface Anal 17: 927–939

    Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulphides. Cambridge University Press, New York, 439 pp

    Google Scholar 

  • Yanful EK, Aube BC, Woyshner MR, St. Arnaud LC (1994) Field and laboratory performance of engineered covers on the Waite Amulet Trailings. International Land Reclamation Mine Drainage Conference and Third International Conference. Abatement Acidic Drainage (U. S. Dept. of the Interior, Bureau of Mines Special Publications SP 06A-94) 2: 138–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesbitt, H.W., Muir, I.J. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineralogy and Petrology 62, 123–144 (1998). https://doi.org/10.1007/BF01173766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173766

Keywords

Navigation