Skip to main content
Log in

Kinetics of pyrite oxidation in sodium carbonate solutions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of pyrite oxidation in sodium carbonate solutions were investigated in a stirred vessel, under temperatures ranging from 50 °C to 85 °C, oxygen partial pressures from 0 to 1 atm, particle size fractions from −150 + 106 to −38 + 10 µm (−100 + 150 Mesh to −400 Mesh + 10 µm) and pH values of up to 12.5. The rate of the oxidation reaction is described by the following expression:−dN/dt = SbkpO 0.52 [OH]0.1

whereN represents moles of pyrite,S is the surface area of the solid particles,b is a stoichiometric factor,k is an apparent rate constant, pO```2`` is the oxygen partial pressure, and [OH] is the hydroxyl ion concentration. The experimental data were fitted by a stochastic model for chemically controlled reactions, represented by the following fractional conversion(X) vs time (t) equation: (1−X)−2/3−1 =k STt

The assumption behind this model,i.e., surface heterogeneity leading to preferential dissolution, is supported by the micrographs of reacted pyrite particles, showing pits created by localized dissolution beneath an oxide layer. In addition to the surface texture, the magnitude of the activation energy (60.9 kJ/mol or 14.6 ± 2.7 kcal/mol), the independence of rate on the stirring speed, the inverse relationship between the rate constant and the initial particle diameter, and the fractional reaction orders are also in agreement with a mechanism controlled by chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. McKibben and H.L. Barnes:Geochim. Cosmochim. Acta, 1986, vol. 5, pp. 1509–20.

    Article  Google Scholar 

  2. M.B. Goldhaber:Am. J. Sci., 1983, vol. 238, pp. 193–217.

    Article  Google Scholar 

  3. W.J. Guay: inGold and Silver Leaching, Recovery and Economics, W.J. Schlitt, etal., eds., AIME, New York, NY, 1981, pp. 17–22.

    Google Scholar 

  4. A.V. Souza and V.S.T. Ciminelli: inGold Extraction: Fundamentals, Practice and Environment, V.S.T. Ciminelli and M.J.G. Salum, eds., ABTM, Belo Horizonte, Brazil, 1992, pp. 177–96.

    Google Scholar 

  5. J.B. Hiskey and W.J. Schlitt: inInterfacing Technologies in Solution Mining, W.J. Schlitt and J.B. Hiskey, eds., AIME, New York, NY, 1982, pp. 55–74.

    Google Scholar 

  6. F.A. Forward and J. Halpern:Journal of Metals, Trans. AIME, Warrendale, PA, 1955, pp. 463–66.

    Google Scholar 

  7. I.H. Warren:Aust. J. Appl. Sci., 1956, vol. 7, pp. 346–58.

    CAS  Google Scholar 

  8. D. Royston, P.A. Spencer, and D.A. Winborne: inExtractive Metallurgy Symposium, The Aust. Inst. of Min. Metall., Victoria, Australia, 1984, pp. 61–67.

    Google Scholar 

  9. K.C. Chuang, M.C. Chen, R.T. Greer, R. Markuszewski, Y. Sun, and T.D. Wheelock:Chem. Eng. Commun., 1980, vol. 7, pp. 79–94.

    Article  CAS  Google Scholar 

  10. R.M.G.S. Berezowsky, M.J. Collins, D.G.E. Kerfoot, and N. Torres:J. Met., 1991, vol. 43 (2), pp. 79–94.

    Google Scholar 

  11. T.D. Wheelock:Chem. Eng. Commun., 1980, vol. 12, pp. 137–59.

    Article  Google Scholar 

  12. R.T. Lowson:Chem. Rev., 1982, vol. 82, pp. 461–97.

    Article  CAS  Google Scholar 

  13. J.F. Stenhouse and W.M. Armstrong:Can Min. Metall. Bull., 1952, Jan., pp. 49–53.

  14. H. Fisher:Min. Sci. Press, 1916, May 26, pp. 743–45.

  15. A.R. Burkin and A.M. Edwards:Proc. 6th Int. Cong. Mineral Processing, Cannes, 1963, pp. 159–69.

  16. E.E. Smith and K.S. Shumate: U.S. Dept. Interior, Fed. Water Quality Adm., Water Pollution Control Research Series, No. 14010 FPS02/70, 1970.

  17. V.H. Gottschalk and H.A. Buehler:Econ. Geol., 1912, vol. 7, pp. 15–34.

    CAS  Google Scholar 

  18. D.R. McKay and J. Halpern:Trans. TMS-AIME, 1958, June, pp. 301–08.

  19. C.T. Mathews and R.G. Robins:Aust. Chem. Eng., 1974, Nov./Dec., pp. 19–24.

  20. L.K. Bailey and E. Peters:Can. Metall. Q., 1976, vol. 15, pp. 333–44.

    CAS  Google Scholar 

  21. G.M. Kostina and A.S. Chernyak:Zh. Prikl. Khim., 1976, vol. 49, pp. 1534–39.

    CAS  Google Scholar 

  22. G.M. Kostina and A.S. Chernyak:Zh. Prikl. Khim., 1979, vol. 52, pp. 766–72.

    CAS  Google Scholar 

  23. M. Sato:Econ. Geol., 1960, vol. 55, pp. 1202–31.

    Article  CAS  Google Scholar 

  24. CO. Moses, D.K. Nordstrom, J.S. Herman, and A.L. Mills:Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 1561–71.

    Article  CAS  Google Scholar 

  25. CO. Moses and J.S. Herman:Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 471–82.

    Article  CAS  Google Scholar 

  26. P.C. Singer and W. Stumm:Science, 1970, vol. 167, pp. 1121–23.

    Article  CAS  Google Scholar 

  27. R.V. Nicholson, R.W. Gillham, and E.J. Reardon:Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1077–85.

    Article  CAS  Google Scholar 

  28. J.B. Hiskey, P.P. Phule, and M.D. Pritzker:Metall. Trans. B, 1987, vol. 18B, pp. 641–47.

    CAS  Google Scholar 

  29. A. Aoki and H. Kametani:Research and Development in Extractive Metallurgy, The Aust. Inst. Min. Metall., Victoria, Australia, 1987, pp. 101–08.

    Google Scholar 

  30. T. Koslides and V.S.T. Ciminelli:Hydrometallurgy, 1992, vol. 30, pp. 87–106.

    Article  CAS  Google Scholar 

  31. V.G. Papangelakis and G.P. Demopoulos:Hydrometallurgy, 1991, vol. 26, pp. 309–25.

    Article  CAS  Google Scholar 

  32. K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1988, vol. 135, pp. 2502–09.

    Article  CAS  Google Scholar 

  33. K.K. Mishra and K. Osseo-Asare:Fuel, 1987, vol. 66, pp. 1161–62.

    Article  CAS  Google Scholar 

  34. K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1992, vol. 139, pp. 749–752.

    Article  CAS  Google Scholar 

  35. K.K. Mishra and K. Osseo-Asare:J. Electrochem. Soc., 1992, vol. 139, pp. 3116–20.

    Article  CAS  Google Scholar 

  36. I.M. Kolthoff and E.B. Sandell:Textbook of Quantitative Inorganic Analysis, 3rd ed., Macmillan, New York, NY, 1952, pp. 322–36.

    Google Scholar 

  37. P.K. Warme:Curve Fitter, Interactive Microware, Inc., New York, NY, 1980.

    Google Scholar 

  38. O. Levenspiel:Chemical Reaction Engineering, Wiley, New York, NY, 1972.

    Google Scholar 

  39. E. Narita, F. Lawson, and K.N. Han:Hydrometallurgy, 1983, vol. 10, pp. 21–37.

    Article  CAS  Google Scholar 

  40. R.E. Reed-Hill:Physical Metallurgy Principles, 3rd ed., PWS-Kent Pub., Boston, MA, 1991.

    Google Scholar 

  41. O. Levenspiel:The Chemical Reactor Omnibook, OSU Book Stores, Inc., Corvallis, OR, 1984.

    Google Scholar 

  42. Rate Processes in Extractive Metallurgy, H.Y. Sohn and M.E. Wadsworth, eds., Plenum, New York, NY, 1979.

    Google Scholar 

  43. J. Szekely, J.W. Evans, and H.Y. Sohn:Gas-solid Reactions, Academic, New York, NY, 1976.

    Google Scholar 

  44. J.J.C. Jansz:Hydrometallurgy, 1984, vol. 12, pp. 225–43.

    Article  CAS  Google Scholar 

  45. I.H. Warren and E. Devuyst: inInternational Symposium on Hydrometallurgy, D.J.I. Evans and R.S. Shoemaker, eds., AIME, New York, NY, 1973, pp. 229–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciminelli, V.S.T., Osseo-Asare, K. Kinetics of pyrite oxidation in sodium carbonate solutions. Metall Mater Trans B 26, 209–218 (1995). https://doi.org/10.1007/BF02660961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02660961

Keywords

Navigation