Skip to main content

Advertisement

Log in

A Low Molecular Weight Folate Receptor Targeted Contrast Agent for Magnetic Resonance Tumor Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study aims to develop a low molecular weight folate receptor (FR) contrast agent for MR tumor imaging.

Procedures

Gadolinium-tetraazacyclododecane tetraacetic acid (Gd.DOTA) was conjugated to folic acid to create Gd.DOTA.Folate. The efficacy of Gd.DOTA.Folate to bind FR was evaluated in vitro by inductively coupled mass spectrometry (ICP-MS) and in vivo by magnetic resonance imaging (MRI) tumor enhancement over 14 h, utilizing an overexpressing α-FR cell line (IGROV-1), compared to an α-FR-negative cell line (OVCAR-3). Gd.DOTA.Folate localization ex vivo was verified by laser ablation ICP-MS.

Results

ICP-MS confirmed Gd.DOTA.Folate uptake by IGROV-1 cells and competitive binding with free folic acid inhibited binding. IGROV-1 tumors showed an increase in R 1 at 2 h, which increased significantly over 14 h post-Gd.DOTA.Folate with clear enhancement on MR images. This was not observed in controls.

Conclusion

These data support the use of FR-targeted small molecular weight MRI contrast agents for tumor imaging in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71:121–138

    Article  PubMed  CAS  Google Scholar 

  2. Matherly LH, Goldman DI (2003) Membrane transport of folates. Vitam Horm 66:403–456

    Article  PubMed  CAS  Google Scholar 

  3. Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  PubMed  CAS  Google Scholar 

  4. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51:5329–5338

    PubMed  CAS  Google Scholar 

  5. Coney LR, Tomassetti A, Carayannopoulos L et al (1991) Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res 51:6125–6132

    PubMed  CAS  Google Scholar 

  6. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443

    Article  PubMed  CAS  Google Scholar 

  7. Luo JSM, Lantrip DA, Wang S, Fuchs PL (1997) Efficient synthesis of pyrofolic acid and pteroyl azide reagents for the production of carboxyl-differentiated derivatives of folic acid. J Am Chem Soc 119:10004–10013

    Article  CAS  Google Scholar 

  8. Moon WK, Lin Y, O’Loughlin T et al (2003) Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjug Chem 14:539–545

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy MD, Jallad KN, Thompson DH, Ben-Amotz D, Low PS (2003) Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. J Biomed Opt 8:636–641

    Article  PubMed  Google Scholar 

  10. Chen WT, Khazaie K, Zhang G, Weissleder R, Tung CH (2005) Detection of dysplastic intestinal adenomas using a fluorescent folate imaging probe. Mol Imaging 4:67–74

    PubMed  Google Scholar 

  11. Kim IB, Shin H, Garcia AJ, Bunz UH (2007) Use of a folate-PPE conjugate to image cancer cells in vitro. Bioconjug Chem 18:815–820

    Article  PubMed  CAS  Google Scholar 

  12. Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA (1998) Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 39:1579–1585

    PubMed  CAS  Google Scholar 

  13. Guo W, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40:1563–1569

    PubMed  CAS  Google Scholar 

  14. Leamon CP, Parker MA, Vlahov IR et al (2002) Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical. Bioconjug Chem 13:1200–1210

    Article  PubMed  CAS  Google Scholar 

  15. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP (2004) Preclinical evaluation of (99m)Tc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45:857–866

    PubMed  CAS  Google Scholar 

  16. Ke CY, Mathias CJ, Green MA (2005) Targeting the tumor-associated folate receptor with an 111In-DTPA conjugate of pteroic acid. J Am Chem Soc 127:7421–7426

    Article  PubMed  CAS  Google Scholar 

  17. Bettio A, Honer M, Muller C et al (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47:1153–1160

    PubMed  CAS  Google Scholar 

  18. Muller C, Hohn A, Schubiger PA, Schibli R (2006) Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 33:1007–1016

    Article  PubMed  Google Scholar 

  19. Okarvi SM, Jammaz IA (2006) Preparation and in vitro and in vivo evaluation of technetium-99m-labeled folate and methotrexate conjugates as tumor imaging agents. Cancer Biother Radiopharm 21:49–60

    Article  PubMed  CAS  Google Scholar 

  20. Siegel BA, Dehdashti F, Mutch DG et al (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44:700–707

    PubMed  CAS  Google Scholar 

  21. Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O (1997) Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 32:748–754

    Article  PubMed  CAS  Google Scholar 

  22. Konda SD, Aref M, Brechbiel M, Wiener EC (2000) Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. Invest Radiol 35:50–57

    Article  PubMed  CAS  Google Scholar 

  23. Konda SD, Wang S, Brechbiel M, Wiener EC (2002) Biodistribution of a 153 Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol 37:199–204

    Article  PubMed  CAS  Google Scholar 

  24. Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11:996–1004

    Article  PubMed  Google Scholar 

  25. Sonvico F, Mornet S, Vasseur S et al (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16:1181–1188

    Article  PubMed  CAS  Google Scholar 

  26. Oyewumi MO, Mumper RJ (2002) Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjug Chem 13:1328–1335

    Article  PubMed  CAS  Google Scholar 

  27. Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD (2009) Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug Chem 20:648–655

    Article  PubMed  CAS  Google Scholar 

  28. Corot C, Robert P, Lancelot E et al (2008) Tumor imaging using P866, a high-relaxivity gadolinium chelate designed for folate receptor targeting. Magn Reson Med 60:1337–1346

    Article  PubMed  CAS  Google Scholar 

  29. Wang ZJ, Boddington S, Wendland M, Meier R, Corot C, Daldrup-Link H (2008) MR imaging of ovarian tumors using folate-receptor-targeted contrast agents. Pediatr Radiol 38:529–537

    Article  PubMed  CAS  Google Scholar 

  30. Corona G, Giannini F, Fabris M, Toffoli G, Boiocchi M (1998) Role of folate receptor and reduced folate carrier in the transport of 5-methyltetrahydrofolic acid in human ovarian carcinoma cells. Int J Cancer 75:125–133

    Article  PubMed  CAS  Google Scholar 

  31. Rasband WS (1997–2008) ImageJ. U. S. National Institutes of Health, Bethesda. http://rsb.info.nih.gov/ij/

  32. Terreno E, Geninatti Crich S, Belfiore S et al (2006) Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55:491–497

    Article  PubMed  CAS  Google Scholar 

  33. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magma 12:104–113

    Article  PubMed  CAS  Google Scholar 

  34. McHugh M, Cheng YC (1979) Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J Biol Chem 254:11312–11318

    PubMed  CAS  Google Scholar 

  35. Miotti S, Bagnoli M, Ottone F, Tomassetti A, Colnaghi MI, Canevari S (1997) Simultaneous activity of two different mechanisms of folate transport in ovarian carcinoma cell lines. J Cell Biochem 65:479–491

    Article  PubMed  CAS  Google Scholar 

  36. Paulos CM, Reddy JA, Leamon CP, Turk MJ, Low PS (2004) Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol Pharmacol 66:1406–1414

    Article  PubMed  CAS  Google Scholar 

  37. Nakashima-Matsushita N, Tomma T, Yu S et al (1999) Selective expression of folate receptor-beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 42:1609–1616

    Article  PubMed  CAS  Google Scholar 

  38. Turk MJ, Breur GJ, Widmer WR et al (2002) Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Reum 46:1947–1955

    Article  Google Scholar 

  39. Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213:165–172

    Article  PubMed  CAS  Google Scholar 

  40. Ayala-Lopez W, Xia W, Varghese B, Low PS (2010) Imaging of atherosclerosis in apoliprotein E knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages. J Nuc Med 51:768–774

    Article  Google Scholar 

Download references

Acknowledgment

Funding for Tammy Kalber was provided by the MRC. The GTC is supported by EPSRC grant and is grateful for recent support from ImuThes Limited. The authors would also like to thank Mahamoud O. Hussein for his contribution to the chemical synthesis as well as Catherin Unsworth and Stanislav Strekopytov from the Department of Mineralogy at the Natural History Museum London for their expertise in running ICP-MS of the samples.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy L. Kalber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalber, T.L., Kamaly, N., So, PW. et al. A Low Molecular Weight Folate Receptor Targeted Contrast Agent for Magnetic Resonance Tumor Imaging. Mol Imaging Biol 13, 653–662 (2011). https://doi.org/10.1007/s11307-010-0400-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0400-3

Key words

Navigation