Skip to main content
Log in

Lipidomic analyses reveal enhanced lipolysis in planthoppers feeding on resistant host plants

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The brown planthopper (BPH) (Nilaparvata lugens Stål) is a highly destructive pest that seriously damages rice (Oryza sativa L.) and causes severe yield losses. To better understand the physiological and metabolic mechanisms through which BPHs respond to resistant rice, we combined mass-spectrometry-based lipidomics with transcriptomic analysis and gene knockdown techniques to compare the lipidomes of BPHs feeding on either of the two resistant (NIL-Bph6 and NIL-Bph9) plants or a wild-type, BPH susceptible (9311) plant. Insects that were fed on resistant rice transformed triglyceride (TG) to phosphatidylcholine (PC) and digalactosyldiacylglycerol (DGDG), with these lipid classes showing significant alterations in fatty acid composition. Moreover, the insects that were fed on resistant rice were characterized by prominent expression changes in genes involved in lipid metabolism processes. Knockdown of the NlBmm gene, which encodes a lipase that regulates the mobilization of lipid reserves, significantly increased TG content and feeding performance of BPHs on resistant plants relative to dsGFP-injected BPHs. Our study provides the first detailed description of lipid changes in BPHs fed on resistant and susceptible rice genotypes. Results from BPHs fed on resistant rice plants reveal that these insects can accelerate TG mobilization to provide energy for cell proliferation, body maintenance, growth and oviposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, M.L., Zhao, M., and Brindle, K.M. (1999). Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J Biol Chem 274, 19686–19692.

    Article  CAS  PubMed  Google Scholar 

  • Arrese, E.L., and Wells, M.A. (1997). Adipokinetic hormone-induced lipolysis in the fat body of an insect, Manduca sexta: synthesis of sn-1,2-diacylglycerols. J Lipid Res 38, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Arrese, E.L., and Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55, 207–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attardo, G.M., Benoit, J.B., Michalkova, V., Yang, G., Roller, L., Bohova, J., Takáč, P., and Aksoy, S. (2012). Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. Insect Biochem Mol Biol 42, 360–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auerswald, L., and Gäde, G. (2000). Metabolic changes in the African fruit beetle, Pachnoda sinuata, during starvation. J Insect Physiol 46, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Baburina, I., and Jackowski, S. (1998). Apoptosis triggered by 1-O-octadecyl-2–0-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP: Phosphocholine cytidylyltransferase. J Biol Chem 273, 2169–2173.

    Article  CAS  PubMed  Google Scholar 

  • Bagnato, C., and Igal, R.A. (2003). Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts. J Biol Chem 278, 52203–52211.

    Article  CAS  PubMed  Google Scholar 

  • Bashan, M., and Cakmak, O. (2005). Changes in composition of phospholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Ann Entomol Soc Am 98, 575–579.

    Article  CAS  Google Scholar 

  • Beenakkers, A.M.Th., Van der Horst, D.J., and Van Marrewijk, W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res 24, 19–67.

    Article  CAS  PubMed  Google Scholar 

  • Bharucha, K.N., Tarr, P., and Zipursky, S.L. (2008). A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol 211, 3103–3110.

    Article  CAS  PubMed  Google Scholar 

  • Blomhoff, R., and Blomhoff, H.K. (2006). Overview of retinoid metabolism and function. J Neurobiol 66, 606–630.

    Article  CAS  PubMed  Google Scholar 

  • Bozkuş, K. (2003). Phospholipid and triacylglycerol fatty acid compositions from various development stages of Melanogryllus desertus Pall. (Orthoptera: Gryllidae). Turk J Biol 27, 73–78.

    Google Scholar 

  • Breitkopf, S.B., Yuan, M., Helenius, K.P., Lyssiotis, C.A., and Asara, J.M. (2015). Triomics analysis of imatinib-treated myeloma cells connects kinase inhibition to RNA processing and decreased lipid biosynthesis. Anal Chem 87, 10995–11006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitkopf, S.B., Ricoult, S.J.H., Yuan, M., Xu, Y., Peake, D.A., Manning, B.D., and Asara, J.M. (2017). A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckner, J.S., and Hagen, M.M. (2003). Triacylglycerol and phospholipid fatty acids of the silverleaf whitefly: composition and biosynthesis. Arch Insect Biochem Physiol 53, 66–79.

    Article  CAS  PubMed  Google Scholar 

  • Carrasco, S., and Mérida, I. (2007). Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Cajka, T., and Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal Chem 61, 192–206.

    Article  CAS  Google Scholar 

  • Chen, J., Cui, Y., Yan, J., Jiang, J., Cao, X., and Gao, J. (2018a). Molecular characterization of elongase of very long-chain fatty acids 6 (elovl6) genes in Misgurnus anguillicaudatus and their potential roles in adaptation to cold temperature. Gene 666, 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Zhang, J., Sampieri, K., Clohessy, J.G., Mendez, L., Gonzalez-Billalabeitia, E., Liu, X.S., Lee, Y.R., Fung, J., Katon, J.M., et al. (2018b). An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet 50, 206–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, X., Zhu, L., and He, G. (2013a). Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant 6, 621–634.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., and He, G. (2013b). A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J 76, 687–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christeller, J.T., Amara, S., and Carrière, F. (2011). Galactolipase, phospholipase and triacylglycerol lipase activities in the midgut of six species of lepidopteran larvae feeding on different lipid diets. J Insect Physiol 57, 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  • Cole, L.K., Vance, J.E., and Vance, D.E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 1821, 754–761.

    Article  CAS  PubMed  Google Scholar 

  • Cook, H.W., and Spence, M.W. (1985). Triacylglycerol as a precursor in phospholipid biosynthesis in cultured neuroblastoma cells: studies with labeled glucose, fatty acid, and triacylglycerol. Can J Biochem Cell Biol 63, 919–926.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Z., Houweling, M., Chen, M.H., Record, M., Chap, H., Vance, D.E., and Tercé, F. (1996). A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem 271, 14668–14671.

    Article  CAS  PubMed  Google Scholar 

  • Destephano, D.B., Brady, U.E., and Lovins, R.E. (1974). Synthesis of prostaglandin by reproductive tissue of the male house cricket, Acheta domesticus. Prostaglandins 6, 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B., et al. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106, 22163–22168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feige, J.N., Gelman, L., Michalik, L., Desvergne, B., and Wahli, W. (2006). From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45, 120–159.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, D., Kohli, A., and Horgan, F.G. (2012). Rice resistance to planthoppers and leafhoppers. Critical Rev Plant Sci 32, 162–191.

    Article  CAS  Google Scholar 

  • Geminard, C., Arquier, N., Layalle, S., Bourouis, M., Slaidina, M., Delanoue, R., Bjordal, M., Ohanna, M., Ma, M., Colombani, J., et al. (2006). Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 55, S5–S8.

    Article  CAS  Google Scholar 

  • Grapes, M., Whiting, P., and Dinan, L. (1989). Fatty acid and lipid analysis of the house cricket, Acheta domesticus. Insect Biochem 19, 767–774.

    Article  CAS  Google Scholar 

  • Greenspan, P., Mayer, E.P., and Fowler, S.D. (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100, 965–973.

    Article  CAS  PubMed  Google Scholar 

  • Grönke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Müller, G., Jäckle, H., and Kühnlein, R.P. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Grönke, S., Müller, G., Hirsch, J., Fellert, S., Andreou, A., Haase, T., Jäckle, H., and Kühnlein, R.P. (2007). Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5, e137.

    Article  PubMed  CAS  Google Scholar 

  • Groscolas, R., and Herzberg, G.R. (1997). Fasting-induced selective mobilization of brown adipose tissue fatty acids. J Lipid Res 38, 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Guillou, H., Zadravec, D., Martin, P.G.P., and Jacobsson, A. (2010). The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 49, 186–199.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Xu, C., Wu, D., Zhao, Y., Qiu, Y., Wang, X., Ouyang, Y., Cai, B., Liu, X., Jing, S., et al. (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet 50, 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Hao, P., Liu, C., Wang, Y., Chen, R., Tang, M., Du, B., Zhu, L., and He, G. (2008). Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146, 1810–1820.

    Article  CAS  PubMed  Google Scholar 

  • Heinrichsen, E.T., and Haddad, G.G. (2012). Role of high-fat diet in stress response of Drosophila. PLoS ONE 7, e42587.

    Article  CAS  PubMed  Google Scholar 

  • Hibino, H. (1996). Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34, 249–274.

    Article  CAS  PubMed  Google Scholar 

  • Hill, L., and Goldsworthy, G.J. (1970). The utilization of reserves during starvation of larvage of the miogratory locust. Comp Biochem Physiol 36, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Hodin, J. (2006). On the origins of insect hormone signaling. Phenotyp Plast Insects 2.

  • Hölzl, G., and Dörmann, P. (2019). Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70, 51–81.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R.W., and Stanley-Samuelson, D.W. (1990). Phospholipid fatty acid composition and arachidonic acid metabolism in selected tissues of adult Tenebrio molitor (Coleoptera: Tenebrionidae). Ann Entomol Soc Am 83, 975–981.

    Article  CAS  Google Scholar 

  • Hu, J., Chang, X., Zou, L., Tang, W., and Wu, W. (2018). Identification and fine mapping of Bph33, a new brown planthopper resistance gene in rice (Oryza sativa L.). Rice 11, 55.

    Article  PubMed  Google Scholar 

  • Igal, R.A., and Coleman, R.A. (1996). Acylglycerol recycling from triacylglycerol to phospholipid, not lipase activity, is defective in neutral lipid storage disease fibroblasts. J Biol Chem 271, 16644–16651.

    Article  CAS  PubMed  Google Scholar 

  • Jackowski, S. (1994). Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem 269, 3858–3867.

    Article  CAS  PubMed  Google Scholar 

  • Jackowski, S. (1996). Cell cycle regulation of membrane phospholipid metabolism. J Biol Chem 271, 20219–20222.

    Article  CAS  PubMed  Google Scholar 

  • Ji, R., Yu, H., Fu, Q., Chen, H., Ye, W., Li, S., and Lou, Y. (2013). Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS ONE 8, e79612.

    Article  PubMed  CAS  Google Scholar 

  • Jirošová, A., Jančařík, A., Menezes, R.C., Bazalová, O., Dolejšová, K., Vogel, H., Jedlička, P., Buček, A., Brabcová, J., Majer, P., et al. (2018). Metabolomic and transcriptomic data on major metabolic/biosynthetic pathways in workers and soldiers of the termite Prorhinotermes simplex (Isoptera: Rhinotermitidae) and chemical synthesis of intermediates of defensive (E)-nitropentadec-1-ene biosynthesis. Data Brief 18, 1614–1627.

    Article  PubMed  Google Scholar 

  • Junot, C., Fenaille, F., Colsch, B., and Bécher, F. (2014). High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spec Rev 33, 471–500.

    Article  CAS  Google Scholar 

  • Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramírez, F., Warwick Vesztrocy, A., Naldi, A., Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al. (2018). GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep 8, 10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, J.H., and Wells, M.A. (1989). Insects as biochemical models. J Biol Chem 264, 16335–16338.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Du, B., Hao, F., Lei, H., Wan, Q., He, G., Wang, Y., and Tang, H. (2017). Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. Plant Biotechnol J 15, 1346–1357.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., Sun, Z., Pan, G., Wang, Q., Hu, J., et al. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33, 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, M.W. (2003). Adipokinetic hormone inhibits the formation of energy stores and egg production in the cricket Gryllus bimaculatus. Comp Biochem Physiol Part B 136, 197–206.

    Article  CAS  Google Scholar 

  • Lu, K., Zhang, X., Chen, X., Li, Y., Li, W., Cheng, Y., Zhou, J., You, K., and Zhou, Q. (2018a). Adipokinetic hormone receptor mediates lipid mobilization to regulate starvation resistance in the brown planthopper, Nilaparvata lugens. Front Physiol 9, 1730.

    Article  PubMed  Google Scholar 

  • Lu, K., Zhou, J., Chen, X., Li, W., Li, Y., Cheng, Y., Yan, J., You, K., Yuan, Z., and Zhou, Q. (2018b). Deficiency of brummer impaires lipid mobilization and JH-mediated vitellogenesis in the brown planthopper, Nilaparvata lugens. Front Physiol 9, 1535.

    Article  PubMed  Google Scholar 

  • Machado, E., Swevers, L., Sdralia, N., Medeiros, M.N., Mello, F.G., and Iatrou, K. (2007). Prostaglandin signaling and ovarian follicle development in the silkmoth, Bombyx mori. Insect Biochem Mol Biol 37, 876–885.

    Article  CAS  PubMed  Google Scholar 

  • McCue, M.D., Guzman, R.M., Passement, C.A., and Davidowitz, G. (2015). How and when do insects rely on endogenous protein and lipid resources during lethal bouts of starvation? A new application for 13C-breath testing. PLoS ONE 10, e0140053.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros, M.N., Oliveira, D.M.P., Paiva-Silva, G.O., Silva-Neto, M.A.C., Romeiro, A., Bozza, M., Masuda, H., and Machado, E.A. (2002). The role of eicosanoids on Rhodnius heme-binding protein (RHBP) endocytosis by Rhodnius prolixus ovaries. Insect Biochem Mol Biol 32, 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Moessinger, C., Klizaite, K., Steinhagen, A., Philippou-Massier, J., Shevchenko, A., Hoch, M., Ejsing, C.S., and Thiele, C. (2014). Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol 15, 43.

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Narváez-Rivas, M., and Zhang, Q. (2016). Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A 1440, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, Y., Arimitsu, H., Yamaryo, Y., Awai, K., Masuda, T., Shimada, H., Takamiya, K., and Ohta, H. (2003). Digalactosyldiacylglycerol is a major glycolipid in floral organs of Petunia hybrida. Lipids 38, 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  • Peng, L., Zhao, Y., Wang, H., Zhang, J., Song, C., Shangguan, X., Zhu, L., and He, G. (2016). Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics 12, 132.

    Article  CAS  Google Scholar 

  • Raclot, T., and Groscolas, R. (1995). Selective mobilization of adipose tissue fatty acids during energy depletion in the rat. J Lipid Res 36, 2164–2173.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., Gao, F., Wu, X., Lu, X., Zeng, L., Lv, J., Su, X., Luo, H., and Ren, G. (2016). Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci Rep 6, 37645.

    Article  CAS  PubMed  Google Scholar 

  • Rivera, O., McHan, L., Konadu, B., Patel, S., Sint Jago, S., and Talbert, M. E. (2019). A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 189, 179–198.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Sogawa, K., and Pathak, M.D. (1970). Mechanisms of brown planthopper resistance in Mudgo variety of rice (Hemiptera: Delphacidae). Appl entomol Zool 5, 145–158.

    Article  Google Scholar 

  • Shangguan, X., Zhang, J., Liu, B., Zhao, Y., Wang, H., Wang, Z., Guo, J., Rao, W., Jing, S., Guan, W., et al. (2018). A Mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiol 176, 552–565.

    Article  CAS  PubMed  Google Scholar 

  • Shi, X.X., Huang, Y.J., Begum, M.A., Zhu, M.F., Li, F.Q., Zhang, M.J., Zhou, W.W., Mao, C., and Zhu, Z.R. (2018). A neutral ceramidase, NlnCDase, is involved in the stress responses of brown planthopper, Nilaparvata lugens (Stål). Sci Rep 8, 1130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sōgawa, K. (1982). The rice brown planthopper: feeding physiology and host plant interactions. Annu Rev Entomol 27, 49–73.

    Article  Google Scholar 

  • Stanley-Samuelson, D.W., and Dadd, R.H. (1983). Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Insect Biochem 13, 549–558.

    Article  CAS  Google Scholar 

  • Stanley-Samuelson, D.W., Howard, R.W., and Toolson, E.C. (1990). Phospholipid fatty acid composition and arachidonic acid uptake and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comp Biochem Physiol Part B-Comp Biochem 97, 285–289.

    Article  Google Scholar 

  • Stanley, D. (2006). Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51, 25–44.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., Sentoku, N., and Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4, 5872.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S.N. (1973). A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp Biochem Physiol Part B 45, 467–482.

    Article  CAS  Google Scholar 

  • Towler, M.C., and Hardie, D.G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100, 328–341.

    Article  CAS  PubMed  Google Scholar 

  • Tronchère, H., Record, M., Tercé, F., and Chap, H. (1994). Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. Biochim Biophys Acta 1212, 137–151.

    Article  PubMed  Google Scholar 

  • Uchida, M., Izawa, Y., and Sugimoto, T. (1987). Inhibition of prostaglandin biosynthesis and oviposition by an insect growth regulator, buprofezin, in Nilaparvata lugens Stål. Pesticide Biochem Physiol 27, 71–75.

    Article  CAS  Google Scholar 

  • van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9, 112–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance, J.E., and Vance, D.E. (2004). Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 82, 113–128.

    Article  CAS  PubMed  Google Scholar 

  • Velusamy, R., Kumar, M.G., and Edward, Y.S.J. (1995). Mechanisms of resistance to the brown planthopper Nilaparvata lugens in wild rice (Oryza spp.) cultivars. Entomol Exp Appl 74, 245–251.

    Article  Google Scholar 

  • Wan, P.J., Zhou, R.N., Nanda, S., He, J.C., Yuan, S.Y., Wang, W.X., Lai, F. X., and Fu, Q. (2019). Phenotypic and transcriptomic responses of two Nilaparvata lugens populations to the Mudgo rice containing Bph1. Sci Rep 9, 14049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, S., Liu, S., Liu, H., Wang, J., Zhou, S., Jiang, R.J., Bendena, W.G., and Li, S. (2010). 20-Hydroxyecdysone reduces insect food consumption resulting in fat body lipolysis during molting and pupation. J Mol Cell Biol 2, 128–138.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.L., He, R.F., and He, G.C. (2005). Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. J Plant Physiol 162, 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhang, M., Feng, F., and He, R. (2015a). Differentially regulated genes in the salivary glands of brown planthopper after feeding in resistant versus susceptible rice varieties. Arch Insect Biochem Physiol 89, 69–86.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., Qiu, Y., Li, R., and Lou, X. (2015b). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot 66, 6035–6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Tang, M., Hao, P., Yang, Z., Zhu, L., and He, G. (2008). Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomol Exp Appl 129, 295–307.

    Article  Google Scholar 

  • Wat, L.W., Chao, C., Bartlett, R., Buchanan, J.L., Millington, J.W., Chih, H.J., Chowdhury, Z.S., Biswas, P., Huang, V., Shin, L.J., et al. (2020). A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS Biol 18, e3000595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng, Q., Huang, Z., Wang, X., Zhu, L., and He, G. (2003). In situ localization of proteinase inhibitor mRNA in rice plant challenged by brown planthopper. Chin Sci Bull 48, 979–982.

    Article  CAS  Google Scholar 

  • Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39, W316–W322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Huang, H.J., Zhou, X., Liu, C.W., and Bao, Y.Y. (2017). Pancreatic lipase-related protein 2 is essential for egg hatching in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 26, 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Zhang, F., He, Q., and He, G. (2005). Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants. Arch Insect Biochem Physiol 59, 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Sun, S., Wang, J., Fei, F., Dong, Z., Ke, A.W., He, R., Wang, L., Zhang, L., Ji, M.B., et al. (2018). Canonical Wnt signaling remodels lipid metabolism in zebrafish hepatocytes following Ras oncogenic insult. Cancer Res 78, 5548–5560.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., et al. (2018). WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res 46, W71–W75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q., and Lou, Y. (2014). Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE 9, e88528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue, L., Kang, K., and Zhang, W. (2019). Metabolic responses of brown planthoppers to IR56 resistant rice cultivar containing multiple resistance genes. J Insect Physiol 113, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., Cai, B., Xin, X.F., Liu, X., Zhang, C., et al. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA 113, 12850–12855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Guan, W., Huang, C., Hu, Y., Chen, Y., Guo, J., Zhou, C., Chen, R., Du, B., Zhu, L., et al. (2019). Combining next-generation sequencing and single-molecule sequencing to explore brown plant hopper responses to contrasting genotypes of japonica rice. BMC Genomics 20, 682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, J., Yan, J., You, K., Chen, X., Yuan, Z., Zhou, Q., and Lu, K. (2018a). Characterization of a Nilaparvata lugens (Stål) brummer gene and analysis of its role in lipid metabolism. Arch Insect Biochem Physiol 97, e21442.

    Article  CAS  Google Scholar 

  • Zhou, J., Chen, X., Yan, J., You, K., Yuan, Z., Zhou, Q., and Lu, K. (2018b). Brummer-dependent lipid mobilization regulates starvation resistance in Nilaparvata lugens. Arch Insect Biochem Physiol 99, e21481.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31630063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcun He.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Xin, Y., Peng, Y. et al. Lipidomic analyses reveal enhanced lipolysis in planthoppers feeding on resistant host plants. Sci. China Life Sci. 64, 1502–1521 (2021). https://doi.org/10.1007/s11427-020-1834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1834-9

Keywords

Navigation