Skip to main content
Log in

Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Simple sequence repeats (SSR) in Prunus expressed sequence tags (EST) were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability in peach. A total of 4,770 and 9,029 SSRs were identified from 12,618 contigs and 34,238 singlets, from which 3,695 and 6,849 primers were designed, respectively. Alignment of the 10,544 forward and reverse primer sequences (21,088 queries) against the peach reference genome at 9e-03 resulted in 23,553 hits (96,621 alignments) with 16,885 queries, and “no hits found” (NHF) for the remaining 4,203 queries. A majority of aligned primers had only one hit/alignment on the peach scaffolds, and the distribution of the 5,500 singly aligned primers (pairs) on each 500-kb genome interval was determined. The average number of ESR-SSR primers per 500-kb interval was 10.8. The primers were categorized into eight subgroups based on the difference between the genome amplicon size and expressed amplicon size of each primer, with 288 primers of optimized distribution and reliability selected for genotype evaluation. Only 2 of the 288 primers failed in all 4 peach cultivars screened, with an overall successful primer/sample rate of 97.2 %. The average number of alleles detected in the four cultivars was 3.84. The polymorphism information content (PIC) values suggested that a majority of the 288 primers had a high rate of allele polymorphism among the four peach cultivars. The advantages of genome-wide analysis of EST-SSR primers and options to improve the polymorphism rate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blenda AV, Wechter WP, Reighard GL, Baird WV, Abbott AG (2006) Development and characterisation of diagnostic AFLP markers in Prunus persica for its response to peach tree short life syndrome. J Hortic Sci Biotechnol 81:281–288

    CAS  Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350

    Article  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

  • Chen C, Gmitter FG Jr (2013) Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus. BMC Genomics 14:746

  • Chen C, Zhou P, Choi YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Bowman KD, Choi YA, Dang PM, Rao MN, Huang S, Soneji JR, McCollum TG, Gmitter FG (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genome 4:1–10

    Article  Google Scholar 

  • Chen C, Bock CH, Beckman TG (2014) Sequence analysis reveals genomic factors affecting EST-SSR primer performance and polymorphism. Mol Genet Genomics. doi:10.1007/s00438-014-0875-8

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bul 19:11–15

    Google Scholar 

  • Horner DS, Pavesi G, Castrignano T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G (2010) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11:181–197

    Article  PubMed  CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • International Peach Genome I, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040.

  • Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2014) The Genome Database for Rosaceae (GDR): year 10 update. Nucleic Acids Res 42:D1237–1244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kayesh E, Zhang YY, Liu GS, Bilkish N, Sun X, Leng XP, Fang JG (2013) Development of highly polymorphic EST-SSR markers and segregation in F(1) hybrid population of Vitis vinifera L. Genet Mol Res 12:3871–3878

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Zhang G, Chen W, Zhang Z, Zou X (2012) Identification and development of polymorphic EST-SSR markers by sequence alignment in pepper, Capsicum annuum (Solanaceae). Am J Bot 99:e59–61

    Article  PubMed  Google Scholar 

  • Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars ( Prunus armeniaca L.) compared with the almond Texas x peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar "Rubira (R)". Tree Genet Genome 7:1057–1068

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • McCarthy S (1993) USDA's Plant Genome Research Program. Bull Med Libr Assoc 81:278–281

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam Kh N, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanty P, Sahoo L, Parida K, Das P (2013) Development of polymorphic EST-SSR markers in Macrobrachium rosenbergii by data mining. Conserv Genet Resour 5:133–136

    Article  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M (2013) Development of 5123 Intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    Article  PubMed  CAS  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Okie WR (1998) Handbook of peach and nectarine varieties: performance in the Southeastern United States and Index of Names. The National Technical Information Service, Springfield, VA

  • Ott J, Rabinowitz D (1997) The effect of marker heterozygosity on the power to detect linkage disequilibrium. Genetics 147:927–930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pettersson A, Winer ES, Wekslerzangen S, Lernmark A, Jacob HJ (1995) Predictability of heterozygosity scores and polymorphism information-content values for rat genetic-markers. Mamm Genome 6:512–520

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol (Clifton, NJ) 132:365–386

    CAS  Google Scholar 

  • Tang J, Vosman B, Voorrips RE, van der Linden CG, Leunissen JA (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics 7:438

    Article  PubMed  PubMed Central  Google Scholar 

  • Terwilliger JD, Ding YL, Ott J (1992) On the relative importance of marker heterozygosity and intermarker distance in gene-mapping. Genomics 13:951–956

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920–925

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Bryan Blackburn, Luke Quick, and Minling Zhang for their technical assistance. The research is partially supported by the USDA National Program of Plant Genetic Resources, Genomics and Genetic Improvement (Project number 6606-21000-004-006) and an USDA National Institute of Food and Agriculture Specialty Crop Research Initiative project (2009-51181- 06036).

Data archiving statement

All Prunus EST sequences and accession numbers are available at the National Center for Biotechnology Information EST database (http://www.ncbi.nlm.nih.gov/nucest/?term=Prunus). The peach (Prunus persica) reference genome assembly (version 1.0) is available at the Genome Database for Rosaceae (http://www.rosaceae.org/species/Prunus_persica/genome_v1.0), so is the mined Prunus EST-SSR primer information (http://www.rosaceae.org/node/336118). The 10545 EST-SSR forward and reverse primers and the selected 288 primers are attached as ESM Tables 2 and 3, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxian Chen.

Additional information

Communicated by W.-W. Guo

This article reports the results of research only. Mention of a trademark or proprietary product is solely for the purpose of providing specific information and does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(XLSX 1316 kb)

ESM 3

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bock, C.H., Okie, W.R. et al. Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach. Tree Genetics & Genomes 10, 1271–1279 (2014). https://doi.org/10.1007/s11295-014-0759-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0759-4

Keywords

Navigation