Skip to main content

Advertisement

Log in

Fine-scale genetic structure of the threatened rosewood Dalbergia nigra from the Atlantic Forest: comparing saplings versus adults and small fragment versus continuous forest

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Assessing the population genetic structure of threatened species is important for developing successful conservation strategies. In this study, we evaluated the fine-scale spatial genetic structure (SGS) of Dalbergia nigra from a regenerating secondary forest fragment and compared it with previous data from a primary forest of a large reserve. A total of 107 adult and 111 saplings were mapped and genotyped for seven microsatellite loci. The genetic diversity was high and similar in adults (H e = 0.682) and saplings (H e = 0.680). The spatial extent of SGS was higher in adults than in saplings. Overlapping generations in the potentially reproductive individuals is the likely explanation for the higher SGS in adults (Sp = 0.016) in relation to the saplings (Sp = 0.010). The SGS in the adults from the secondary forest fragment was similar to that found in the primary forest. Considering the SGS found in adults, from both the secondary and primary forests, seeds for ex situ conservation should be collected from trees at least 80 m apart to reduce the genetic similarity between samples. These results highlight the importance of preserving small forest fragments to allow successful regeneration and maintenance of the genetic diversity in D. nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asuka Y, Tomaru N, Nisimura N, Tsumura Y, Yamamoto S (2004) Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Mol Ecol 13:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    Article  PubMed  Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2009) Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genet Genomes 5:573–582

    Article  Google Scholar 

  • Born C, Hardy OJ, Chevallier M, Ossari S, Atteke C, Wickings EJ, Hossaert-Mickey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050

    Article  PubMed  Google Scholar 

  • Buzatti RSO, Ribeiro RA, Lemos-Filho JP, Lovato MB (2012) Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest. Genet Mol Biol 35:838–846

    Article  Google Scholar 

  • Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF/SPI, Brasília, Brazil

  • Carvalho PER (1997) A synopsis of the genus Dalbergia (Fabaceae: Dalbergieae) in Brazil. Brittonia 49:87–109

    Article  Google Scholar 

  • Cavers S, Degen B, Caron H, Lemes MR, Margis R, Salgueiro F, Lowe AJ (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289

    Article  CAS  PubMed  Google Scholar 

  • Céspedes M, Gutierrez MV, Holbrook NM, Rocha OJ (2003) Restoration of genetic diversity in the dry forest tree Swietenia macrophylla (Meliaceae) after pasture abandonment in Costa Rica. Mol Ecol 12:3201–3212

    Article  PubMed  Google Scholar 

  • Chung MY, Epperson BK, Chung MG (2003) Genetic structure of age classes in Camellia japonica (Theaceae). Evolution 57:62–73

    Article  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • CITES (1992) CITES: Appendices I, II and III to the Convention on International Trade in Endangered Species of Wild Fauna and Flora. US Fish and Wildlife service, Washington, USA

    Google Scholar 

  • de Andrade R (2009) IEF: um compromisso com a natureza. Empresa das Artes, São Paulo, Brazil

    Google Scholar 

  • Debout GDG, Doucet JL, Hardy OJ (2011) Population history and gene dispersal inferred from spatial genetic structure of a Central African timber tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106:88–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De-Lucas AI, González-Martínez SC, Vendramin GG, Hidalgo E, Heuertz M (2009) Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton. Mol Ecol 18:4564–4576

    Article  CAS  PubMed  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764

    Article  PubMed  Google Scholar 

  • Doligez A, Joly HI (1997) Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72–82

    Google Scholar 

  • Epperson BK (1992) Spatial structure of genetic variation within populations of forest trees. New Forest 6:257–278

    Article  Google Scholar 

  • Epperson BK, Alvarez-Buylla ER (1997) Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51:275–282

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater JM, Gil L, Alía R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor Appl Genet 104:1290–1297

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 9 September 2011

  • Hanson TR, Brunsfeld SJ, Finegan B, Waits LP (2008) Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscape. Mol Ecol 17:2060–2073

    Article  PubMed  Google Scholar 

  • Hardesty BD, Dick CW, Kremer A, Hubbell S, Bermingham E (2005) Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed, Neotropical tree, on Barro Colorado Island, Panama. Heredity 95:290–297

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier M, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • IBAMA (1992) Lista Oficial de Espécies da Flora Brasileira Ameaçadas de Extinção. Ministério do Meio Ambiente, IBAMA – Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis, Brasília, Brazil. Diário Oficial, 6 de abril de 1992, 4302–4303

  • IUCN (2011) IUCN Red List of Threatened Species (version 2011.2). http://www.iucnredlist.org. Accessed 11 October 2011

  • Jacquemyn H, Vandepitte K, Roldán-Ruiz I, Honnay O (2009) Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann Bot 103:777–783

    Google Scholar 

  • Jolivet C, Höltken AM, Liesebach H, Steiner W, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): I. Variation among natural populations of different density. Tree Genet Genomes 7:271–283

    Article  Google Scholar 

  • Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15:3205–3217

    Article  CAS  PubMed  Google Scholar 

  • Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Mol Ecol 16:697–707

    Article  CAS  PubMed  Google Scholar 

  • Kelly BA, Hardy OJ, Bouvet JM (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (Shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Latouche-Hallé C, Ramboer A, Bandou E, Caron H, Kremer A (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a Neotropical tree population. Heredity 91:181–190

    Article  PubMed  Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum Ltda, Nova Udessa, São Paulo, Brazil

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Martins ML (2007) História e Meio Ambiente. Annablume Editora, São Paulo, Brazil

    Google Scholar 

  • Minitab (2010) Minitab 16 Statistical Software. http://www.minitab.com State college, PA: Minitab, Inc, USA. Accessed 27 September 2011

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.

    Google Scholar 

  • Nathan R, Horn HS, Chave J, Levin SA (2002) Mechanistic models for seed dispersal by wind in dense forests and open landscapes. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CAB International, Oxfordshire, UK, pp 69–82

    Google Scholar 

  • Ng KKS, Lee SL, Koh CL (2004) Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Mol Ecol 13:657–669

    Article  PubMed  Google Scholar 

  • Novaes R, Rodrigues JG, Lovato MB (2009) An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet Mol Res 8:86–96

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa T, Tsuda Y, Saito Y, Sawada H, Ide Y (2007) Steep slopes promote downhill dispersal of Quercus crispula seeds and weaken the fine-scale genetic structure of seedling populations. Ann For Sci 64:405–412

    Article  Google Scholar 

  • Pardini EA, Hamrick JL (2008) Inferring recruitment history from spatial genetic structure within populations of the colonizing tree Albizia julibrissin (Fabaceae). Mol Ecol 17:2865–2879

    Article  CAS  PubMed  Google Scholar 

  • Resende LC, Ribeiro RA, Lovato MB (2011) Diversity and genetic connectivity among populations of a threatened tree (Dalbergia nigra) in a recently fragmented landscape of the Brazilian Atlantic Forest. Genetica 139:1159–1168

    Article  PubMed  Google Scholar 

  • Ribeiro RA, Ramos ACS, Lemos-Filho JP, Lovato MB (2005) Genetic variation in remnant populations of Dalbergia nigra (Papilionoideae), an endangered tree from the Brazilian Atlantic Forest. Ann Bot 95:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirato MM (2009a) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro RA, Rezende MFS, Resende LC, Lemos-Filho JP, Kalapothakis E, Lovato MB (2009b) Development of polymorphic microsatellite markers for Dalbergia nigra (Papilionoideae), an endangered tree from the Brazilian Atlantic Forest. Mol Ecol Resour 9:203–206

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RA, Lemos-Filho JP, Ramos ACS, Lovato MB (2011) Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest. Heredity 106:46–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sebbenn AM, Degen B, Azevedo VCR, Silva MB, de Lacerda AEB, Ciampi AY, Kanashiro M, Carneiro FS, Thompson I, Loveless MD (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manag 254:335–349

    Google Scholar 

  • Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaino APSC, da Siva JM, Jolivet C, Moraes MLT (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sezen UU, Chazdon RL, Holsinger KE (2005) Genetic consequences of tropical second-growth forest regeneration. Science 307:891

    Article  CAS  PubMed  Google Scholar 

  • Sezen UU, Chazdon RL, Holsinger KE (2007) Multigenerational genetic analysis of tropical secondary regeneration in a canopy palm. Ecology 88:3065–3075

    Article  PubMed  Google Scholar 

  • Slavov GT, Leonardi S, Adams WT, Strauss SH, DiFazio SP (2010) Population substructure in continuous and fragmented stands of Populus trichocarpa. Heredity 105:348–357

    Article  CAS  PubMed  Google Scholar 

  • Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2009) Plantas da Floresta Atlântica Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil: 516 pp

  • Tarazi R, Sebbenn AM, Mollinari M, Vencovsky R (2010) Mendelian inheritance, linkage and linkage disequilibrium in microsatellite loci of Copaifera langsdorfii Desf. Conservation Genet Resour 2:201–204

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vieira FA, Fajardo CG, de Souza AM, Reis CAF, de Carvalho D (2012) Fine-scale genetic dynamics of a dominant neotropical tree in the threatened Brazilian Atlantic Rainforest. Tree Genet Genomes 8:1191–1201

    Article  Google Scholar 

  • Wang R, Compton SG, Chen X-Y (2011) Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol 20:4421–4432

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci U S A 99:2038–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams DA, Wang Y, Borchetta M, Gaines MS (2007) Genetic diversity and spatial structure of a keystone species in fragmented pine rockland habitat. Biol Conserv 138:256–268

    Article  Google Scholar 

  • Young AG, Merriam HG (1994) Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh (Sugar Maple) populations. Heredity 72:201–208

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Instituto Estadual de Florestas (IEF) and Sumidouro State Park for providing facilities and licenses for sample collection. We also thank PCC Ribeiro and HAV Souza for field/data analyses assistance. This work was supported by the Programa Nacional de Pós Doutorado/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) and Pró-Reitoria de Pesquisa da Universidade Federal de Minas Gerais. FABL received an MSc scholarship from Conselho Nacional de Desenvolvimento Tecnológico (CNPq), RLB received a research fellowship from PNPD/CAPES, and MBL and JPL received a research fellowship from CNPq.

Data archiving statement

All microsatellite locus and primer sequences used in this study have been deposited at GenBank: accession numbers EU805580, EU805581, EU805582, EU805583, EU805584, EU805588 and EU805589. Genotyping data has been deposited at TreeGenes Data Repository accession TGDR012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bernadete Lovato.

Additional information

Communicated by S. Aitken

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista Leite, F.A., Brandão, R.L., Buzatti, R.S.d. et al. Fine-scale genetic structure of the threatened rosewood Dalbergia nigra from the Atlantic Forest: comparing saplings versus adults and small fragment versus continuous forest. Tree Genetics & Genomes 10, 307–316 (2014). https://doi.org/10.1007/s11295-013-0685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0685-x

Keywords

Navigation