Skip to main content
Log in

Fine-scale genetic dynamics of a dominant neotropical tree in the threatened Brazilian Atlantic Rainforest

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

We present a case study of the relationship between spatial genetic structure (SGS) and age structure in Protium spruceanum (Burseraceae), an insect-pollinated, mass-fruiting, and secondary bird-dispersed tree, as determined through variation in allozyme loci. Using ten polymorphic loci, we investigated spatial and temporal patterns of a genetic structure within a 40 m × 60 m plot in a small (1.0 ha) fragment of Atlantic Rainforest to investigate the processes shaping the distribution of genetic diversity. Individuals (n = 345) from seedlings to adults were grouped and analyzed in four diameter classes. The results showed a high average level of genetic diversity (H e = 0.438), but genetic diversity parameters did not vary significantly among cohorts. The spatial distribution pattern analysis of individuals showed significant levels of aggregation among small- and medium-diameter classes and random distribution among the highest diameter class, likely due to processes of competitive thinning. There was an association between demographic and SGS at short distances (less than 10 m) which is likely the consequence of restricted seed dispersal. The degree of SGS decreased across small- to large-diameter classes. We inferred that limited seed dispersal and subsequent density-dependent mortality from the family clusters are responsible for the observed changes in fine-scale SGS across different demographic classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbour RC, Potts BM, Vaillancourt RE (2005) Pollen dispersal from exotic eucalypt plantations. Conserv Genet 6:253–257. doi:10.1007/s10592-004-7849-z

    Article  Google Scholar 

  • Besag JE, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. Appl Stat 26:327–333

    Article  Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591. doi:10.1038/sj.hdy.6801019

    Article  PubMed  CAS  Google Scholar 

  • Cavers S, Degen B, Caron H et al (2005) Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289. doi:10.1038/sj.hdy.6800709

    Article  PubMed  CAS  Google Scholar 

  • Collevatti RG, Lima JS, Soares TN, Campos TMP (2010) Spatial genetic structure and life history traits in Cerrado tree species: inferences for conservation. Nat Conservação 8(1):54–59. doi:10.4322/natcon.00801008

    Article  Google Scholar 

  • Condit R, Ashton PS, Baker P et al (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418. doi:10.1126/science.288.5470.1414

    Article  PubMed  CAS  Google Scholar 

  • Conte R, Nodari RO, Vencovsky R et al (2003) Genetic diversity and recruitment of the tropical palm, Euterpe edulis Mart., in a natural population from the Brazilian Atlantic Forest. Heredity 91:401–406. doi:10.1038/sj.hdy.6800347

    Article  PubMed  CAS  Google Scholar 

  • Dev SA, Kjellberg F, Hossaert-McKey M, Borges RM (2011) Fine-scale population genetic structure of two dioecious Indian keystone species, Ficus hispida and Ficus exasperata (Moraceae). Biotropica 43:309–316. doi:10.1111/j.1744-7429.2010.00704.x

    Article  Google Scholar 

  • El-Kassaby YA, Fashlerand AMK, Sziklai O (1984) Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet 33:120–125

    Google Scholar 

  • Epperson BK, Alvarez Buylla ER (1997) Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51:275–282. doi:10.2307/2410981

    Article  Google Scholar 

  • Gaino APSC, Silva AM, Moraes MA et al (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Conserv Genet 11:1631–1643. doi:10.1007/s10592-010-0046-3

    Article  Google Scholar 

  • Gonçalves AC, Reis CAF, Vieira FA, Carvalho D (2010) Estrutura genética espacial em populações naturais de Dimorphandra mollis (Fabaceae) na região norte de Minas Gerais, Brasil. Rev Bras Bot 33(2):325–332. doi:10.1590/S0100-84042010000200013

    Article  Google Scholar 

  • Goreaud F, Pelissier R (1999) On explicit formulas of edge effect correction for Ripley’s K-function. J Veg Sci 10:433–438. doi:10.2307/3237072

    Article  Google Scholar 

  • Goudet J (2002) FSTAT (version 2.9.3.2.): a computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  • Goudet J, Raymond M, de Meuus T et al (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  • Hall P, Chase MR, Bawa KS (1994) Low genetic variation but high population differentiation in a common tropical forest tree species. Cons Biol 8:471–482. doi:10.1046/j.1523-1739.1994.08020471.x

    Article  Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic-structure of tropical tree populations. Vegetatio 108:281–297

    Google Scholar 

  • Hardesty BD, Dick CW, Kremer A et al (2005) Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed, neotropical tree, on Barro Colorado Island, Panama. Heredity 95:290–297. doi:10.1038/sj.hdy.6800714

    Article  PubMed  CAS  Google Scholar 

  • Hardner CM, Potts BM, Gore PL (1998) The relationship between cross success and spatial proximity of Eucalyptus globulus ssp. globulus parents. Evolution 52:614–618. doi:10.2307/2411096

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8278.2002.00305.x

    Article  Google Scholar 

  • He F, Legendre P, LaFrankie JV (1997) Distribution patterns of tree species in a Malaysian tropical rain forest. J Veg Sci 8:105–114. doi:10.2307/3237248

    Article  Google Scholar 

  • Hubbell SP (1979) Tree dispersion, abundance and diversity in a dry tropical forest. Science 203:1299–1309. doi:10.1126/science.203.4387.1299

    Article  PubMed  CAS  Google Scholar 

  • Itoh A, Yamakura T, Ogino K et al (1997) Spatial distribution patterns of two predominant emergent trees in a tropical rainforest in Sarawak, Malaysia. Plant Ecol 132:121–136. doi:10.1023/A:1009779424279

    Article  Google Scholar 

  • Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15:3205–3217. doi:10.1111/j.1365-294X.2006.03023.x

    Article  PubMed  CAS  Google Scholar 

  • Jones FA, Chen J, Weng G-J, Hubbell SP (2005) A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Am Nat 166:543–555. doi:10.1086/491661

    Article  PubMed  CAS  Google Scholar 

  • Jones FA, Hamrick JL, Peterson CJ et al (2006) Inferring colonization history from analysis of spatial genetic structure in populations of Pinus strobus and Quercus rubra. Mol Ecol 15:851–861. doi:10.1111/j.1365-294X.2005.02830.x

    Article  PubMed  CAS  Google Scholar 

  • Jordano P, Garcia C, Godoy JA, Garcia-Castano JL (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci USA 104:3278–3282. doi:10.1073/pnas.0606793104

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FA et al (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history and selection. Evolution 55:1560–1568. doi:10.1111/j.0014-3820.2001.tb00675.x

    PubMed  CAS  Google Scholar 

  • Kelly BA, Hardy OJ, Bouvet J-M (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Mol Ecol 13:1231–1240. doi:10.1111/j.1365-294X.2004.02144.x

    Article  PubMed  CAS  Google Scholar 

  • Kittelson PM, Maron JL (2001) Fine-scale genetically based differentiation of life-history traits in the perennial shrub Lupinus arboreus. Evolution 55:2429–2438. doi:10.1111/j.0014-3820.2001.tb00758.x

    PubMed  CAS  Google Scholar 

  • Latouche-Halle C, Ramboer A, Bandou E et al (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population. Heredity 91:181–190. doi:10.1038/sj.hdy.6800296

    Article  PubMed  CAS  Google Scholar 

  • Loiselle BA, Sork VL, Nason J et al (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425. doi:10.2307/2445869

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273. doi:10.1038/sj.hdy.6800725

    Article  PubMed  CAS  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman & Hall, New York

    Google Scholar 

  • Martins K, Chaves LJ, Buso GSC, Kageyama PY (2006) Mating system and fine-scale spatial genetic structure of Solanum lycocarpum St. Hill (Solanaceae) in the Brazilian Cerrado. Conserv Genet 7:957–969. doi:10.1007/s10592-006-9140-y

    Article  Google Scholar 

  • Meyer HA (1952) Structure, growth, and drain in balanced uneven-aged forests. J For 50:85–92

    Google Scholar 

  • Moreira PA, Fernandes GW, Collevatti RG (2009) Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry neotropical tree. For Ecol Manag 258:2690–2695. doi:10.1016/j.foreco.2009.09.037

    Article  Google Scholar 

  • Ng KKS, Lee SL, Koh CL (2004) Spatial structure and genetic diversity two tropical tree species with contrasting breeding systems and different ploidy levels. Mol Ecol 13:657–669. doi:10.1046/j.1365-294X.2004.02094.x

    Article  PubMed  Google Scholar 

  • Perry GLW (2004) SpPack: spatial point pattern analysis in Excel using Visual Basic for Applications (VBA). Environ Model Softw 19:559–569. doi:10.1016/j.envsoft.2003.07.004

    Article  Google Scholar 

  • Plotkin JB, Potts M, Leslie N et al (2000) Species–area curves, spatial aggregation, and habitat specialization in tropical forests. J Theor Biol 207:81–99. doi:10.1006/jtbi.2000.2158

    Article  PubMed  CAS  Google Scholar 

  • Ripley BD (1976) The second-order analysis of stationary processes. J Appl Brobab 13:255–266

    Article  Google Scholar 

  • Rousset F (2002) Inbreeding and relatedness coefficients: what do they measure? Heredity 88:371–380. doi:10.1038/sj.hdy.6800065

    Article  PubMed  CAS  Google Scholar 

  • Sagnard F, Oddou-Muratorio S, Pichot C, Vendramin GG, Fady B (2011) Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet Genomes 7:37–48. doi:10.1007/s11295-010-0313-y

    Article  Google Scholar 

  • Sebbenn AM, Carvalho ACM, Freitas MLM et al (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145. doi:10.1038/hdy.2010.33

    Article  PubMed  CAS  Google Scholar 

  • Shaw DV, Allard RW (1982) Estimation of outcrossing rates in Douglas fir using isozyme markers. Tree Genet Genomes 62:113–120. doi:10.1007/BF00293342

    Google Scholar 

  • Silva MB, Kanashiro M, Ciampi AY et al (2008) Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. For Ecol Manag 255:1548–1558. doi:10.1016/j.foreco.2007.11.012

    Article  Google Scholar 

  • Skabo S, Vaillancourt RE, Potts BM (1998) Fine-scale genetic structure of Eucalytus globulus ssp. globulus forest revealed by RAPDs. Aust J Bot 46:583–594. doi:10.1071/BT97056

    Article  Google Scholar 

  • Swofford DL, Selander RB (1989) Biosys-1. A computer program for the analysis of genetic variation in population genetic and biochemical systematics, version 1.7. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Torezan JMD, Souza RF, Ruas PM et al (2005) Genetic variability of pre and post-fragmentation cohorts of Aspidosperma polyneuron Muell. Arg. (Apocynaceae). Braz Arch Biol Technol 48:171–180. doi:10.1590/S1516-89132005000200002

    Article  CAS  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H et al (2002) Size–class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89:120–126. doi:10.1038/sj.hdy.6800111

    Article  PubMed  CAS  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analysis in plant populations. Mol Ecol 13:921–935. doi:10.1046/j.1365-294X.2004.02076.x

    Article  PubMed  CAS  Google Scholar 

  • Vieira FA, Carvalho D (2008) Genetic structure of an insect-pollinated and bird-dispersed tropical tree in vegetation fragments and corridors: implications for conservation. Biodivers Conserv 17:2305–2321. doi:10.1007/s10531-008-9367-7

    Article  Google Scholar 

  • Vieira FA, Carvalho D, Higuchi P et al (2010a) Spatial pattern and fine-scale genetic structure indicating recent colonization of the palm Euterpe edulis in a Brazilian Atlantic forest fragment. Biochem Genet 48:96–103. doi:10.1007/s10528-009-9298-3

    Article  Google Scholar 

  • Vieira FA, Fajardo CG, Souza AM et al (2010b) Landscape-level and fine-scale genetic structure of the neotropical tree Protium spruceanum (Burseraceae). Int J Forest Res 2010:1–8. doi:10.1155/2010/120979

    Article  Google Scholar 

  • Vieira FA, Appolinário V, Fajardo CG et al (2010c) Reproductive biology of Protium spruceanum (Burseraceae), a dominant dioecious tree in vegetation corridors in Southeastern Brazil. Rev Bras Bot 33(4):711–715. doi:10.1590/S0100-84042010000400018

    Article  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45

    Chapter  Google Scholar 

  • Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104:209–229. doi:10.1111/j.0030-1299.2004.12497.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Flávio R. Gonçalvez, Rodrigo M.G. Melo, and Rubens M. dos Santos for valuable field assistance and Eduardo van den Berg for all his advice. We also thank Jeffrey Joseph (Royal Botanic Gardens, Kew), Margaret Byrne, and anonymous reviewers for the suggestions and corrections and Dr. Evelyn Nimmo for editing the English language of the manuscript. Finally, we would like to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico for providing a research fellowship for D. Carvalho and a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio de Almeida Vieira.

Additional information

Communicated by M. Byrne

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material

(DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida Vieira, F., Fajardo, C.G., de Souza, A.M. et al. Fine-scale genetic dynamics of a dominant neotropical tree in the threatened Brazilian Atlantic Rainforest. Tree Genetics & Genomes 8, 1191–1201 (2012). https://doi.org/10.1007/s11295-012-0506-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0506-7

Keywords

Navigation