Skip to main content

Advertisement

Log in

Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Araucaria angustifolia is an endangered tropical/subtropical coniferous of great interest for conservation due its economical, ecological, and social value. Only 3% of original Araucaria forests remain, which are generally confined to small forest fragments. Forest fragmentation can have serious consequences on genetic process in tree population, affecting long-term fitness and adaptability. To investigate the effects of forest fragmentation on genetic diversity and the structure of A. angustifolia populations, the genetic diversity of eight microsatellite loci was compared in four small fragmented populations (<22 ha), four tree groups (five to 11 trees) occurring in pastures and in three plots in a large continuous population. The clearest effect of fragmentation was the loss of rare alleles (p ≤ 0.05) in fragmented populations (19.4% to 47.2%) and intermediate frequency (0.05 < p ≤ 0.25) and rare alleles (p ≤ 0.05) in tree groups (19% to 86.1%) in comparison to continuous populations. Fragmented populations have significant higher fixation index (\( \widehat{F}_{\text{IS}} = 0.121 \), P < 0.05) than continuous populations (\( \widehat{F}_{\text{IS}} = 0.083 \), P < 0.05). High genetic differentiation was detected among tree groups (\( \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.258 \), P < 0.01) and low among fragments (\( \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.031 \), P < 0.05) and continuous populations (\( \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.026 \), P < 0.05), showing a significant bottleneck effect in tree groups. Evidence that forest fragments have experienced a recent bottleneck was confirmed in at least two studied fragments. The implications of the results for conservation of the fragmented A. angustifolia populations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldrich PR, Hamrick JL, Chavarriaga P, Kochert G (1998) Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol Ecol 7:933–944

    Article  PubMed  CAS  Google Scholar 

  • Auler NMF, Reis MS, Guerra MP, Nodari RO (2002) The genetics and conservation of Araucaria angustifolia: I Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina. Genet Mol Biol 25:329–338

    Article  CAS  Google Scholar 

  • Baucom RS, Estill JC, Cruzan MB (2005) The effect of deforestation on the genetic diversity and structure in Acer saccharum (Marsh): Evidence for the loss and restructuring of genetic variation in a natural system. Cons Genet 6:39–50

    Article  Google Scholar 

  • Bellington HL (1991) Effect of population size on genetic variation in a dioecious conifer. Cons Biol 5:115–119

    Article  Google Scholar 

  • Bergmann F, Gregorius H-H, Larsen JB (1990) Levels of genetic variation in European silver fir (Abies alba)–are they related to the species´ declines? Genetica 81:1–10

    Article  Google Scholar 

  • Bittencourt JM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99:580–591. doi:10.1038/sj.hdy.6801019

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt JM, Sebbenn AM (2008) Pollen movement in a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TwoGener analysis. Cons Genet 9:855–868. doi:10.1007/s10592-007-9411-2

    Article  Google Scholar 

  • Bohonak AJ (2002) IBD (Isolation by distance): A program for Analyses of isolation by distance. J Heredity 93:153–154

    Article  CAS  Google Scholar 

  • Carvalho PER (2003) Espécies Florestais Brasileiras: Recomendações Sílviculturais, Potencialidades e Uso da Madeira. Publicações EMBRAPA-CNPF, Brasília, pp 70–78

    Google Scholar 

  • Cascante A, Quesada M, Lobo JJ, Fuchs EA (2002) Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Cons Biol 16:137–147

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detection recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72–84

    Article  Google Scholar 

  • Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistic. Evolution 47:855–863

    Article  Google Scholar 

  • Dayanandan S, Dole J, Bawa K, Kesseli R (1999) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol 8:1585–1592

    Article  PubMed  Google Scholar 

  • Degen B (2006) Genetic data analysis and numerical test. GDA-NT. Beta version 1.0. b.degen@holz.uni-hamburg.de

  • Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Goudet J (2002) Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  • Hall P, Walker S, Bawa K (1996) Effect of forest fragmentation on genetic diversity and mating system in a tropical tree Pithecellobium elegans. Cons Biol 10:757–768

    Article  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Manage 197:323–335

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hedrick F (2005) A standardized genetic differentiation measured. Evolution 59:1633–1638

    PubMed  CAS  Google Scholar 

  • Isagi Y, Tateno R, Matsuki Y, Hirao A, Watanabe S, Shibata M (2007) Genetic and reproductive consequences of forest fragmentation for populations of Magnolia obovata. Ecol Res 22:382–389

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kettle CJ, Hollingsworth M, Jaffré T, Moran B, Ennos RA (2007) Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Mol Ecol 16:3581–3591

    Article  PubMed  CAS  Google Scholar 

  • Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Piry S, Cornuet JM (1998) Molecular genetic test identifies endangered populations. Cons Biol 12:228–237

    Article  Google Scholar 

  • Meagher TR (1986) Analysis of paternity within a natural population of Chamaelirium luteum.1. Identification of most-likely male parents. Am Nat 128:199–215

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Mazza MCM, Bittencourt JV (2000) Extração de DNA de tecido de Araucaria angustifolia (Araucariacea). Bol Pesq Flor 41:12–17

    Google Scholar 

  • Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation: Two case studies of Neotropical Canopy trees. J Heredity 88:264–276

    Google Scholar 

  • Nei M, Roychoudhury AK (1974) Sampling variances of heterozigosity and genetic distance. Genetics 76:927–943

    Google Scholar 

  • O´Connell LM, Mosseler A, Rajora OP (2006) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97:418–426

    Article  Google Scholar 

  • Prober SM, Brown AHD (1994) Conservation of the grassy white box woodlands–population genetics and fragmentation of Eucalyptus albens. Cons Biol 8:1003–1013

    Article  Google Scholar 

  • Rajora OP, Mosseler A (2001) Challenges and opportunity for conservation of forest genetic resources. Euphytica 118:197–212

    Article  Google Scholar 

  • Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobes) in Ontario, Canada. Mol Ecol 9:339–348

    Article  PubMed  CAS  Google Scholar 

  • Salgueiro F, Caron H, De Sousa MIF, Kremer A, Margis R (2005) Characterization of nuclear microsatellite loci in South American Araucariaceae species. Mol Ecol Notes 5:256–258

    Article  CAS  Google Scholar 

  • Savolainen O, Kärkkäinen K (1992) Effect of forest management on gene pools. New Forest 6:329–345

    Article  Google Scholar 

  • Sousa VA, Sebbenn AM, Hattemer H, Ziehe M (2005) Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. Forest Genet 12:107–119

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8:1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Young AG, Boyle TJ (2000) Forest fragmentation. In: Young AG, Boshier D, Boyle TJ (eds) Forest conservation genetics: principles and practice. CSIRO, Melbourne, pp 123–134

    Google Scholar 

  • Young AG, Boyle T, Brown ADH (1996) The population genetic consequences of habitat fragmentation for plants. Tren Ecol Evol 11:413–418

    Article  Google Scholar 

Download references

Acknowledgements

J.V.M. Bittencourt would like to thank the National Council of Scientific and Technological Development (CNPq) for granting her PhD scholarship to Reading University (UK). A.M. Sebbenn is supported by a CNPq (Grant 301238/2007-3) scholarship due his scientific paper production. The authors thank two reviewers and Associate Editor Dr. Outi Savolainen for constructive criticism and suggestions in previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Magno Sebbenn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bittencourt, J.V.M., Sebbenn, A.M. Genetic effects of forest fragmentation in high-density Araucaria angustifolia populations in Southern Brazil. Tree Genetics & Genomes 5, 573–582 (2009). https://doi.org/10.1007/s11295-009-0210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0210-4

Keywords

Navigation