Skip to main content
Log in

Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for transport of malic acid from the cytosol into the vacuole. Here, we provide evidence that a malic acid transporter gene at the top of chromosome 16 caused significant differences in malic acid concentration and pH of apples. The pH of apples in a segregating F1 population was mapped and at the pH locus (named henceforth Ma locus for malic acid), two putative malic acid transporter genes were detected. These genes show high homology to AtALMT genes that code for malate channel proteins located in vacuolar membrane in Arabidopsis. The expression of one of the candidate genes (Ma1) cosegregated clearly with malic acid content. The inheritance of at least one dominant allele of this gene sufficed for an increased expression level that likely caused the observed threefold increase of the malic acid concentration and the reduction of the pH from 4 to 3 in mature apples, compared to the presence of the recessive, lowly expressed allele only. Our results show that differences in fruit acidity were probably caused by differences in expression levels of alleles of a malic acid transporter gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Report 18:109–115

    Article  CAS  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    Article  PubMed  CAS  Google Scholar 

  • Berüter J (2004) Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J Plant Physiol 161:1011–1029

    Article  PubMed  Google Scholar 

  • Brown AG, Harvey DM (1971) The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20:68–80

    Article  CAS  Google Scholar 

  • Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochem 70:828–832

    Article  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Hurth MA, Su JS, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910

    Article  PubMed  CAS  Google Scholar 

  • Jensen WB (2007) The origin of the names malic, maleic, and malonic acid. Chem Educ 84:924

    Article  Google Scholar 

  • Khan SA, Chibon PY, de Vos RCH, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RGF, van de Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot. doi:10.1093/jxb/err464

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kovermann P, Meyer S, Hörtensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52:1169–1180

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agricul Food Chem 51:6516–6520

    Article  CAS  Google Scholar 

  • Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo J-Y, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biol 10:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ × ‘Discovery’ progeny. Phytopathol 93:493–501

    Article  CAS  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR, Shibasaka M, Matsumoto H (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  PubMed  CAS  Google Scholar 

  • Lommen A (2009) Metalign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theore Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Martinoia E, Rentsch D (1994) Malate compartmentation—responses to a complex metabolism. Annu Rev Plant Physiol Plant Molbiol 45:447–467

    Article  CAS  Google Scholar 

  • Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil JC, Lallamand JY (1986) Cytoplasmic pH regulation in Acer pseudoplantus cells. II. Possible mechanisms involved in pH regulation during acid load. Plant Physiol 82:846–852

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J 67:247–257

    Article  PubMed  CAS  Google Scholar 

  • Nour V, Trandafir I, Ionica ME (2010) Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:228–233

    CAS  Google Scholar 

  • Nybom N (1959) On the inheritance of acidity in cultivated apples. Heriditas Heriditas 45:332–350

    Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Schouten HJ, van de Weg WE, Carling J, Khan SA, McKay SJ, van Kaauwen MPW, Wittenberg AHJ, Koehorst-van Putten HJJ, Noordijk Y, Gao Z, Rees DJG, Van Dyk MM, Jaccoud D, Considine MJ, Kilian A (2011) Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Mol Breeding:1-16

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochem 70:1329–1344

    Article  CAS  Google Scholar 

  • Ulrich R (1970) Organic acids. In: The biochemistry of fruit and their products;. Academic, London, edited by Hutme AC:89–118

  • Van Ooijn J (2009) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations Kyazma BV, Wageningen, The Netherlands

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, MacAlma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van De Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H + P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biol 10:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Visser T, Verhaegh JJ (1978) Inheritance and selection of some fruit characters of apple. I. Inheritance of low and high acidity. Euphytica 27:753–760

    Article  Google Scholar 

  • Visser T, Schaap AA, De Vries DP (1968) Acidity and sweetness in apple and pear. Euphytica 17:153–167

    Google Scholar 

  • Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103:88–93

    Article  CAS  Google Scholar 

  • Xu K, Wang A, Brown B (2011) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breeding. doi:10.1007/s11032-011-9674-7

  • Yamaki S (1984) Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant Cell Physiol 25:151–166

    CAS  Google Scholar 

  • Yamamoto A, Akiba N, Kodama S, Matsunaga A, Kato K, Nakazawa H (2001) Enantiomeric purity determination of malic acid in apple juices by multi-beam circular dichroism detection. J Chromatography A 928:139–144

    Article  CAS  Google Scholar 

  • Yao YX, Li M, Liu Z, You CX, Wang DM, Zhai H, Hao YJ (2009) Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Sci Hortic 122:404–408

    Article  CAS  Google Scholar 

  • Yao YX, Li M, Zhai H, You CX, Hao YJ (2011) Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J Plant Physiol 168:474–480

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li P, Cheng L (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem 123:1013–1018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by PiDON, Inova Fruit B.V., and the Higher Education Commission (HEC) of Pakistan. We are thankful to Chris Maliepaard from Plant Breeding Department (Wageningen UR) for providing pH data and Aranka van der Burgh for helping in cDNA synthesis. We also thank Harry Jonker for technical assistance during the malic acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Schouten.

Additional information

Communicated by A. Dandekar

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Genotypes used for measuring malic acid content and expression of three candidate genes. Average sizes of eight fruits per tree of a genotype are given at each stage. The malic acid relative content at these three stages is also given (DOC 53 kb)

Supplementary Table 2

Primer pairs developed along Ma1 used for checking allele specific information between Ma and ma haplotypes. Start and Stop positions are referred to the genomic sequence of Ma1 (DOCX 15.7 KB)

Supplementary Figure 1

Examples of single nucleotide polymorphisms in the Ma gene for the two parental cultivars, and of two progeny genotypes. In the progeny the parental alleles can be recognized (DOCX 201 KB)

Supplementary Table 3

Genome annotation of the scaffold 16 of apple (Velasco et al. 2010) within the genetic window for the Ma locus between markers CH02a03 and CH05e04z (download from http://www.rosaceae.org). The two malic acid transporters found within the genetic window are highlighted in grey. The start and stop positions and the lengths (bp) of the putative transcripts are given (DOCX 82.7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.A., Beekwilder, J., Schaart, J.G. et al. Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16. Tree Genetics & Genomes 9, 475–487 (2013). https://doi.org/10.1007/s11295-012-0571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0571-y

Keywords

Navigation