Skip to main content
Log in

Inheritance of chilling and heat requirements for flowering in almond and QTL analysis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The chilling and heat requirements and flowering time were studied, for 2 years, in an almond progeny from the cross between the late-flowering French selection “R1000” and the early-flowering Spanish “Desmayo Largueta”. These three temperature-dependent traits showed quantitative inheritance, although for chilling requirements and flowering time a major gene could be involved, modified by other minor genes. The results indicate that flowering time is mainly a consequence of the chilling requirements; heat requirements having a smaller effect. In agreement with the genetic findings, a significant Quantitative Trait Loci (QTL) for chilling requirements was found in G4 together with other minor QTLs in G1, G3, and G7. For heat requirements, two QTLs in G2 and G7 were identified. The results also show the high influence of temperature in the expression of the three traits and their QTL analyses. In addition, QTL analysis for flowering time allowed the identification of one significant QTL in linkage group 4 (G4) that explained most of the phenotypic variation together with other minor QTLs located in G1, G6, and G7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170

    Article  Google Scholar 

  • Alonso JM, Ansón JM, Espiau MT, Socias i Company R (2005) Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. J Am Soc Hort Sci 130:308–318

    Google Scholar 

  • Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hort Sci Biotechnol 74:757–761

    Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211

    Google Scholar 

  • Asins MJ, Mester P, García JE, Dicenta F, Carbonell E (1994) Genotype × environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89:358–369

    Article  Google Scholar 

  • Ballester J, Socias i Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    Article  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95:436–444

    Article  PubMed  CAS  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arús P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562–573

    Article  PubMed  Google Scholar 

  • Campoy JA, Ruiz D, Egea J (2011a) Dormancy in temperate fruit trees in a global warning context: a review. Sci Hort 130(2):357–372

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011b) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat markers. Plant Mol Biol Rep 29:404–410

    Article  CAS  Google Scholar 

  • Chaparro J, Beckman T (2008) Detection of vegetative bud dormancy QTL in peach. HortSci 43:1269

    Google Scholar 

  • Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Am Soc Hort Sci 110:47–50

    Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud T, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    Article  PubMed  CAS  Google Scholar 

  • Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hort Sci 68:113–120

    Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Celton JM, Dondini L, Illa B, Quilot B, Audergon JM, Tartarin S, Arús P, Costes E, Denyoes Rotha B (2010) QTLs detection for phonological traits within the Rosaeae family. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Egea J, Ortega E, Martínez-Gómez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot 50:79–85

    Article  Google Scholar 

  • Erez A, Couvillon GA, Hendershott CH (1979) The effect of cycle length on chilling negation by high temperatures in dormant peach leaf buds. J Am Soc Hort Sci 104:573–576

    Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Felipe AJ (1977) Phenological states of almond (in Italian). Proceedings of the 3rd GREMPA Colloquium. Bari, Italy, pp 101–103

  • Felker FC, Robitaille HA (1985) Chilling accumulation and rest of sour cherry flower buds. J Am Soc Hort Sci 110:227–232

    Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × P. davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Grasselly C (1978) Observations sur l’utilization d’un mutant l’Amandier a’ floraison tardize dans un programme d’hybridizaiton. Ann Amel Plantes 28:685–695

    Google Scholar 

  • Guerriero R, Viti R, Monteleone P, Gentile M (2002) Comparison of three different methods for the evaluation of dormancy in apricot (in Italian). Frutticoltura 3:73–77

    Google Scholar 

  • Hagen LS, Chaib J, Fad B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot. Mol Ecol Notes 4:432–434

    Article  Google Scholar 

  • Harrington CA, Gould PJ, St. Clair JB (2010) Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecol Manag 259:798–808

    Article  Google Scholar 

  • Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23

    Article  Google Scholar 

  • Illa E, Sargeant DJ, Lopez E, Bushara J, Cestaro A, Cabrera A, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome. BMC Evol Biol 11:9

    Article  PubMed  Google Scholar 

  • Jiménez S, Li Z, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy-incapable tree mutant. BMC Plant Biol 10:25

    Article  PubMed  Google Scholar 

  • Jung S, Jiwan D, Cho I, Abbott A, Tomkins J, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76

    Article  PubMed  Google Scholar 

  • Kester DE, Raddi P, Asay R (1977) Correlation of chilling requirements for germination, blooming and leafing within and among seedling populations of almond. J Am Soc Hort Sci 102:145–148

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnel RL (1987) Endo-, para-, and eco-dormancy physiological terminology and classification for dormancy research. HortSci 22:371–377

    Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Zhebentyayeva T, Olukolu B, Wide D, Reighard G, Abbott AG (2010) Comparison of gene order in the chromosome region containing a TERMINAL FLOWER 1 homolog in apricot and peach reveals microsynteny across angiosperms. Plant Sci 179:390–398

    Article  CAS  Google Scholar 

  • Lopes K, Sefc M, Laimer M, Da Câmara MA (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    Article  CAS  Google Scholar 

  • Luedeling E, Brown PH (2010) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421

    Article  PubMed  Google Scholar 

  • Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:162–163

    Article  Google Scholar 

  • Okie WR, Blackburn (2008) Interaction of chill and heat in peach flower bud dormancy. HortSci 43:1161–1161

    Google Scholar 

  • Okie WR, Blackburn (2011) Increasing chilling reduces heat requirement for floral budbreak in peach. HortSci 46:245–252

    Google Scholar 

  • Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    Article  PubMed  CAS  Google Scholar 

  • Quero-García J, Le Dantec L, Fodor A, Reignier A, Capdevilla G, Joly J, Tauzin Y, Fouilhaux L, Dirlewanger E (2010) QTL detection for fruit quality and phonological characters in sweet cherry. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092

    Article  PubMed  CAS  Google Scholar 

  • Richardson EA, Seeley SD, Walker RD (1974) A model estimating the completion of rest for Red Haven and Elberta peach. HortSci 9:331–332

    Google Scholar 

  • Rodríguez J, Sherman WB, Scorza R, Wisniweski M, Okie WR (1994) ‘Evergreen’ peach, its inheritance and dormant behaviour. J Am Soc Hort Sci 119:789–792

    Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263

    Article  Google Scholar 

  • Sánchez-Pérez R, Ballester J, Dicenta F, Arús P, Martínez-Gómez P (2006) Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: implications for the assessment of genetic diversity and relatedness in almond. Sci Hort 108:310–316

    Article  Google Scholar 

  • Sánchez-Pérez R, Ortega E, Duval H, Martínez-Gómez P, Dicenta F (2007a) Inheritance and correlation of important agronomic traits in almond. Euphytica 155:381–391

    Article  Google Scholar 

  • Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007b) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  • Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genomes 6:237–245

    Article  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Gardiner SE, Potter D, Veilleux E (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D.A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    Article  PubMed  CAS  Google Scholar 

  • Socias i Company R, Felipe AJ, Gómez-Aparisi J (1999) A major gene for flowering time in almond. Plant Breed 118:443–448

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L) Batsch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Sosinski B, Verde I, Morgante M, Rokhsar D, The International Peach Genome Initiative (2010) A first draft of the peach genome sequence and its use for genetic diversity analysis in peach. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)

  • Tabuenca MC (1972) Chilling requirements in almond (in Spanish). Anal Estación Exp Aula Dei 11:325–329

    Google Scholar 

  • Tavassolian I, Rabiei G, Gregory D, Mnejja M, Wirthensohn MG, Hunt PW, Gibson JP, Ford CM, Sedgley M, Wu S-B (2010) Construction of an almond linkage map in an Australian population Nonpareil × Lauranne. BMC Genomics 11:551–561

    Article  PubMed  Google Scholar 

  • Testolin R, Messina R, Lain O, Marrazo T, Huang G, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461

    Article  CAS  Google Scholar 

  • Tzonev R, Erez A (2003) Inheritance of chilling requirement for dormancy completion in apricot vegetative buds. Acta Hort 622:429–436

    Google Scholar 

  • Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Heredity 93:352–358

    Article  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–302

    Article  CAS  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 4:1–8

    Google Scholar 

  • Zhebentyayeva T, Fan S, Olukolu B, Barakat A, Leida C, Badenes ML, Bielenberg D, Reighard G, Okie W, Abbott AG (2010) From genetics to epigenetics in control of chilling requirements and flowering time in peach. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)

Download references

Acknowledgments

This work has been financed by the project “Mejora Genética del Almendro” from the Spanish Ministry of Science and Innovation. We thank Dr. José Campoy and Dr. José Egea of the CEBAS-CSIC (Murcia) for their help in the calculation of CU and GDH and in the discussion of results, Ms. Teresa Cremades of the CEBAS-CSIC for her technical help in the field and in the SSR analysis, and Dr. Werner Howad of the IRTA-CSIC (Barcelona) for his assistance in the analyses performed with JOINMAP v. 3.0 and MapQTL 4.0 software. Finally, Dr. Tatyana Zhebentyayeva is thanked greatly for providing the non-published primer sequences pchgms238 and pchgms240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Sánchez-Pérez.

Additional information

Communicated by A. Dandekar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Pérez, R., Dicenta, F. & Martínez-Gómez, P. Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genetics & Genomes 8, 379–389 (2012). https://doi.org/10.1007/s11295-011-0448-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0448-5

Keywords

Navigation