Skip to main content
Log in

Development of a BAC library for yellow-poplar (Liriodendron tulipifera) and the identification of genes associated with flower development and lignin biosynthesis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert VA, Soltis DE, Carlson JE, Farmerie WG, Wall PK, Ilut DC, Mueller LA, Landherr LL, Hu Y, Buzgo M, Kim S, Yoo M-J, Frohlich MW, Perl-Treves R, Schlarbaum S, Bliss B, Tanksley S, Oppenheimer DG, Soltis PS, Ma H, dePamphilis CW, Leebens-Mack JH (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5:5

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller EW, Myiers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–219

    CAS  Google Scholar 

  • Bennett MD, Bhandol P, Leitch I (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb): using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25% larger than the Arabidopsis genome initiative estimate of ∼125 Mb. Ann Bot 91:547–557

    Article  PubMed  CAS  Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9:91–100

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis D, Doyle JJ, Soltis P, Carlson JE, Arumuganathan K, Barakat A, Albert V, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  PubMed  CAS  Google Scholar 

  • Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Article  Google Scholar 

  • Frank MB (1997) Southern blot hybridizations. In: Frank MB (ed) Molecular biology protocols. Oklahoma City, OK

    Google Scholar 

  • Harlow WM, Harrar ES (1969) Textbook of dendrology. McGraw-Hill, New York, pp 512

    Google Scholar 

  • Hecht V, Foucher F, Ferrandiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltran JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  PubMed  CAS  Google Scholar 

  • Hernandez R, Davalos JF, Sonti SS, Kim Y, Moody RC (1997) Strength and stiffness of reinforced yellow-poplar glued laminated beams. Res. Pap. FPL-RP-554, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI

  • Hunt D (1998) Magnolias and their allies. International Dendrology Society & Magnolia Society, pp 304

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kossack DS, Kinlaw CS (1999) IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol Biol 39:417–426

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotranspons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lafayette PR, Eriksson KE, Dean JF (1999) Characterization and heterologous expression of laccase cDNAs from the lignifying xylem of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963

    Article  PubMed  CAS  Google Scholar 

  • Leeton PR, Smyth DR (1993) An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet 237:97–104

    Article  PubMed  CAS  Google Scholar 

  • Little EL Jr (1979) Checklist of United States trees (native and naturalized). U.S. Department of Agriculture, Agriculture Handbook 541. Washington, DC, pp 375

  • Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  PubMed  CAS  Google Scholar 

  • Maniatas T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY

    Google Scholar 

  • McCarthy EF (1933) Yellow-poplar characteristics, growth, and management. U.S. Department of Agriculture, Technical Bulletin 356. Washington, DC, pp 58

  • Moody RC, Hernandez R, Davalos JF, Sonti SS (1993) Yellow poplar timber beam performance. Res. Pap. FPL-RP-520, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI

  • Moore G, Lucas H, Batty N, Flavell R (1991) A family of retrotransposons and associated genomic variation in wheat. Genomics 10:461–468

    Article  PubMed  CAS  Google Scholar 

  • Nagle NJ, Elander RT, Newman MM, Rohrback BT, Ruiz RO, Torget RW (2002) Efficacy of a hot washing process for pretreated yellow-poplar to enhance bioethanol production. Biotechnol Prog 18:734–738

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Nakajima R, Ohtsubo H, Ohtsubo E (1997) RIRE1, a retrotransposon from wild rice (Oryza australiensis). Genes Genet Syst 72:131–140

    Article  PubMed  CAS  Google Scholar 

  • Park D, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285:1579–1582

    Article  PubMed  CAS  Google Scholar 

  • Parks CR, Wendel JF (1990) Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Am J Bot 77:1243–1256

    Article  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996a) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    PubMed  CAS  Google Scholar 

  • Pearce SR, Pich U, Harrison G, Flavell AJ, Heslop-Harrison JS, Schubert I, Kumar A (1996b) The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 4:357–364

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y-L, Dombrovska O, Lee J, Li L, Whitlock BA, Bernasconi-Quadroni F, Rest JS, Davis CC, Borsch T, Hilu KW, Renner SS, Soltis DE, Soltis PS, Zanis MJ, Cannone JJ, Gutell RR, Powell M, Savolainen V, Chatrou LW, Chase MW (2005) Phylogenetic analysis of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int J Plant Sci 166:815–842

    Article  CAS  Google Scholar 

  • Ronse de Craene L, Soltis DE, Soltis PS (2003) Evolution of floral structures in basal angiosperms. Int J Plant Sci 164:S329–S363

    Article  Google Scholar 

  • San Miguel P, Tikhonov A, Jin YK, Motchoulskaian N, Zakharov D, Melake-Berhan A, Springer PS, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim U, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG (2003) Evolution of flowering in response to day length: flipping the CONSTANS switch. Bioessays 25:829–832

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Tomkins JP, Mahalingham R, Miller-Smith H, Goicoechea JL, Knapp HT, Wing RA (1999) A soybean bacterial artificial chromosome library for PI 437654 and the identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH, Wing RA (2001) Development of genomic resources for cotton (Gosypium hirsutum): BAC library development, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8:255–261

    Article  CAS  Google Scholar 

  • Tomkins JP, Davis G, Main D, Duru N, Musket T, Goicoechea JL, Frisch DA, Coe EH Jr, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933

    Article  CAS  Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Wei ZX, Wu ZY (1993) Pollen ultrastructure of Liriodendron and its systematic significance. Acta Bot Yunnanica 15:163–166

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wilde HD, Meagher RB, Merkle SA (1992) Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol 98:114–120

    Article  PubMed  CAS  Google Scholar 

  • Williams RS, Feist WC (2004) Durability of yellow-poplar and sweetgum and service life of finishes after long-term exposure. Forest Products J 54:96–101

    Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka Y, Matsumoto S, Kjima S, Ohshima K, Okada N, Machida Y (1993) Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc Natl Acad Sci USA 90:6562–6566

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis D, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Science Foundation grant numbers 0207202 (dePamphilis and Carlson), 0211611 (Wing), and 0208502 (Mandoli) to The Green Plant BAC Library Project, and by the Schatz Center for Tree Molecular Genetics at Pennsylvania State University. We thank Jayson Talag, Sheila Plock, Kerr Wall, and Deb Grove for their assistance in developing and characterizing the BAC resource. We greatly acknowledge The Floral Genome Project for the prepublication access to cDNA probes and EST information on yellow-poplar, without which the library characterization might not have been possible. We are indebted to Abdelali Barakat for the many helpful discussions during the project and for the insightful comments on the manuscript.

CWD, DFM, JEC, JAB, JPT, and RAD participated in the design of the study and were co-PIs on the project. SES provided the biological samples from which the libraries were made. KA performed the cell flow cytometry genome-size determination. EGF and JPT constructed the BAC library. ML and DK constructed the plasmid shotgun library. DK, EGF, HL, HRK, ML, and SZ participated in library characterization. HL was the primary author of the manuscript. All authors have read and approved this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Carlson.

Additional information

Communicated by J. Dean

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Description of the probes used to screen the Liriodendon (DOC 28 KB)

Table S2

Putative assignments of the shotgun end sequence tags (best alignments by BLASTN, BLASTX, or TBLASTX) (DOC 36 KB)

Table S3

Putative assignments of the 45 BAC end-sequence tags (best alignments by BLASTN, BLASTX, or TBLASTX) (DOC 34 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Fang, E.G., Tomkins, J.P. et al. Development of a BAC library for yellow-poplar (Liriodendron tulipifera) and the identification of genes associated with flower development and lignin biosynthesis. Tree Genetics & Genomes 3, 215–225 (2007). https://doi.org/10.1007/s11295-006-0057-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0057-x

Keywords

Navigation