Skip to main content
Log in

Genome-Wide Identification and Characterization of Nucleotide-Binding Site (NBS) Resistance Genes in Pineapple

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Pineapple is a major tropical fruit and the most important crop processing CAM photosynthesis. It originated in southwest Brazil and northeast Paraguay and survived the harsh, semi-arid environment. Disease resistance genes have contributed to the survival and thriving of this species. The largest class of disease resistance (R) genes in plants consists of genes encoding nucleotide-binding site (NBS) domains. The sequenced genome of pineapple (Ananas comosus (L.) Merr.) provides a resource for analyzing the NBS-encoding genes in this species. A total of 177 NBS-encoding genes were identified using automated and manual analysis criteria, and these represent about 0.6 % of the total number of predicted pineapple genes. Five genes identified here contained the N-terminal Toll/Interleukin-l receptor (TIR) domain, and 46 genes carried the N-terminal Coiled-Coil (CC) motif. A majority of these NBS-encoding genes (84 %) contained a leucine-rich repeat (LRR) domain. A total of 130 of 177 (73 %) of these NBS-encoding genes were distributed across 20 pineapple linkage groups. The identification and characterization of NBS genes in pineapple yielded a valuable genomic resource and improved understanding of R genes in pineapple, which will facilitate the development of disease resistant pineapple cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NBS:

Nucleotide-binding site

TIR:

N-terminal Toll/Interleukin-l receptor

CC:

Coiled-Coil

LRR:

Leucine-rich repeat

R:

Resistance

References

  • Ameline-Torregrosa CW, O'Bleness B-B, et al. (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Pennill LA, Ning J, et al. (2002) Diversity in nucleotide binding site–leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Williams N, Misleh C, et al. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bella J, Hindle K, McEwan P, et al. (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, et al. (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Jiang H, Zhao Y, et al. (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33:292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, et al. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Cooley MB, Pathirana S, Wu H-J, et al. (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey KK, Borth WB, Melzer MJ, et al. (2015) Analysis of pineapple mealybug wilt associated virus-1 and-2 for potential RNA silencing suppressors and pathogenicity factors. Viruses 7:969–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J et al. (2013) Pfam: the protein families database. Nucleic Acids Res:gkt1223

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  CAS  PubMed  Google Scholar 

  • Gambley C, Steele V, Geering A, et al. (2008) The genetic diversity of ampeloviruses in Australian pineapples and their association with mealybug wilt disease. Australas Plant Pathol 37:95–105

    Article  CAS  Google Scholar 

  • Guo Y-L, Fitz J, Schneeberger K, et al. (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, et al. (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Jia RZ, Ming R, Zhu YJ (2013) Genome-wide analysis of nucleotide-binding site (NBS) disease resistance (R) genes in Sacred Lotus (Nelumbo nucifera Gaertn.) reveals their transition role during early evolution of land plants. Trop Plant Biol 6:98–116

    Article  CAS  Google Scholar 

  • Jiao Y, Li J, Tang H, et al. (2014) Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26:2792–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, et al. (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Rinaldi C, Duplessis S, et al. (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  CAS  PubMed  Google Scholar 

  • Konin E, Aravind L (2000) The NACHT family–a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224

    Article  Google Scholar 

  • Korf I (2004) Gene finding in novel genomes. BMC Bioinf 5:59

    Article  Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D, et al. (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  CAS  PubMed  Google Scholar 

  • Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, et al. (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, et al. (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One 7:e34775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Hamblin MT, Prochnik S, et al. (2015) Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Malacarne G, Perazzolli M, Cestaro A, et al. (2012) Deconstruction of the (paleo) polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 7:e29762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. (2014) CDD: NCBI's conserved domain database. Nucleic Acids Res. doi:10.1093/nar/gku1221

    PubMed Central  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, et al. (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–358

    Article  CAS  PubMed  Google Scholar 

  • Mcdowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol Plant Pathol 7:437–448

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, et al. (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHale L, Tan X, Koehl P, et al. (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32:77–92

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, et al. (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, VanBuren R, Wai CM, et al. (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monosi B, Wisser R, Pennill L, et al. (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Paterson A, Bowers J, Chapman B (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter BW, Paidi M, Ming R, et al. (2009) Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family. Mol Gen Genomics 281:609–626

    Article  CAS  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sether D, Hu J (2002) Yield impact and spread of Pineapple mealybug wilt associated virus-2 and mealybug wilt of pineapple in Hawaii. Plant Dis 86:867–874

    Article  Google Scholar 

  • Sether D, Melzer M, Busto J, et al. (2005) Diversity and mealybug transmissibility of ampeloviruses in pineapple. Plant Dis 89:450–456

    Article  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Schöffmann O, Morgenstern B, et al. (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf 7:62

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, et al. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan X, Meyers BC, Kozik A, et al. (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Bowers JE, Wang X, et al. (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477

    Article  CAS  PubMed  Google Scholar 

  • Tarr DEK, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC research notes 2:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Ting JP, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Calis O, Patrick E, et al. (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:95–110

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Feng Z, Zhang X, et al. (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Gu T, Pan C, et al. (2008a) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116:165–177

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue J-X, et al. (2008b) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280:187–198

    Article  CAS  Google Scholar 

  • Yue JX, Meyers BC, Chen JQ, et al. (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Wang Y, Chen J-Q, et al. (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Zhenyang Liao and Jingping Fang for providing bioinformatics technical assistance. This work was supported by Fujian Agriculture and Forestry University startup fund to RM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Communicated by: Paulo Arruda

Electronic supplementary material

ESM 1

(XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liang, P. & Ming, R. Genome-Wide Identification and Characterization of Nucleotide-Binding Site (NBS) Resistance Genes in Pineapple. Tropical Plant Biol. 9, 187–199 (2016). https://doi.org/10.1007/s12042-016-9178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-016-9178-z

Keywords

Navigation