Skip to main content
Log in

Production and biological activities of yellow pigments from Monascus fungi

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balakrishnan B, Karki S, Chiu S et al (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    Article  CAS  Google Scholar 

  • Balakrishnan B, Kim HJ, Suh JW et al (2014) Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. J Korean Soc Appl Biol Chem 57:191–196

    Article  CAS  Google Scholar 

  • Campoy S, Rumbero A, Martín JF, Liras P (2006) Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496

    Article  CAS  Google Scholar 

  • Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1372

    Article  CAS  Google Scholar 

  • Chang YY, Hsu WH, Pan TM (2015) Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells. J Agric Food Chem 63:192–199

    Article  CAS  Google Scholar 

  • Chen MH, Johns MR (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138

    Article  CAS  Google Scholar 

  • Chen MH, Johns MR (1994) Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb Technol 16:584–590

    Article  CAS  Google Scholar 

  • Chen FC, Manchard PS, Whalley WB (1969) The structure of monascin. J Chem Soc D 3:130–131

    Google Scholar 

  • Chen G, Shi K, Song D et al (2015) The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia. BMC Biotechnol 15:72

    Article  Google Scholar 

  • Cheng MJ, Wu MD, Chen IS et al (2011) Chemical constituents from the fungus Monascus purpureus and their antifungal activity. Phytochem Lett 4:372–376

    Article  CAS  Google Scholar 

  • Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440

    Article  CAS  Google Scholar 

  • Hajjaj H, Klaebe A, Loret MO et al (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol 65:311–314

    CAS  Google Scholar 

  • Hajjaj H, Klaebe A, Goma G et al (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125

    Article  CAS  Google Scholar 

  • Hossain CF, Okuyama E, Yamazaki M (1996) A new series of coumarin derivatives having monoamine oxidase inhibitory activity from Monascus anka. Chem Pharm Bull 44:1535–1539

    Article  CAS  Google Scholar 

  • Hsu YW, Hsu LC, Liang YH et al (2010) Monaphilones A–C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem 58:8211–8216

    Article  CAS  Google Scholar 

  • Hsu LC, Hsu YW, Liang YH et al (2011) Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J Agric Food Chem 59:1124–1130

    Article  CAS  Google Scholar 

  • Hsu WH, Lee BH, Liao TH et al (2012) Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem Toxicol 50:1178–1186

    Article  CAS  Google Scholar 

  • Hsu LC, Liang YH, Hsu YW et al (2013) Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J Agric Food Chem 61:2796–2802

    Article  CAS  Google Scholar 

  • Hsu WH, Chen TH, Lee BH et al (2014) Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem Toxicol 64:94–103

    Article  CAS  Google Scholar 

  • Jian W (2007) Application of molecular simulation on molecular derivation and functional design of Monascus dye. Dissertation, Fujian Agriculture and Forestry University, China

  • Jongrungruangchok S, Kittakoop P, Yongsmith B et al (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  CAS  Google Scholar 

  • Jou PC, Ho BY, Hsu YW, Pan TM (2010) The effect of Monascus secondary polyketide metabolites, monascin and ankaflavin, on adipogenesis and lipolysis activity in 3T3-L1. J Agric Food Chem 58:12703–12709

    Article  CAS  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  • Kang B, Zhang X, Wu Z et al (2013) Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem 48:759–767

    Article  CAS  Google Scholar 

  • Klinsupa W, Phansiri S, Thongpradis P et al (2016) Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade) and white mutant (prototroph). J Biotechnol 217:62–71

    Article  CAS  Google Scholar 

  • Krairak S, Yamamura K, Irie R et al (2000) Maximizing yellow pigment production in fed-batch culture of Monascus sp. J Biosci Bioeng 90:363–367

    Article  CAS  Google Scholar 

  • Lee CL, Kung YH, Wu CL et al (2010) Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019

    Article  CAS  Google Scholar 

  • Lee CL, Wen JY, Hsu YW, Pan TM (2013) Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J Agric Food Chem 61:1493–1500

    Article  CAS  Google Scholar 

  • Lee CL, Lin PY, Hsu YW, Pan TM (2015) Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid β-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. J Funct Foods 18:387–399

    Article  CAS  Google Scholar 

  • Li J (2010) Purification and structure identification of water-soluble Monascus yellow pigments. Dissertation, Fujian Agriculture and Forestry University, China

  • Li JJ, Shang XY, Li LL et al (2010) New cytotoxic azaphilones from Monascus purpureus-fermented rice (red yeast rice). Molecules 15:1958–1966

    Article  CAS  Google Scholar 

  • Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    Article  CAS  Google Scholar 

  • Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    Article  CAS  Google Scholar 

  • Lin CP, Lin YL, Huang PH et al (2011) Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J Sci Food Agric 91:1751–1758

    Article  CAS  Google Scholar 

  • Liu Q, Xie N, He Y et al (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296

    Article  CAS  Google Scholar 

  • Liu Q, Cai L, Shao Y et al (2016) Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biol 120:297–305

    Article  CAS  Google Scholar 

  • Loret MO, Morel S (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803

    Article  CAS  Google Scholar 

  • Manchand PS, Whalley WB (1973) Isolation and structure of ankaflavin: a new pigment from Monascus anka. Phytochemistry 12:2531–2532

    Article  CAS  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2009) Photostability of natural orange-red and yellow fungal pigments in liquid food model systems. J Agric Food Chem 57:6253–6261

    Article  CAS  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  CAS  Google Scholar 

  • Martin, Edward JS, Kurek PR et al (1991) Reduced monascus pigment derivatives as yellow food colorants. US Patent No. 5,013,564

  • Martinkova L, Patakova JP, Kren V et al (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    Article  CAS  Google Scholar 

  • Patel S (2016) Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons. World J Microbiol Biotechnol 32:1–12

    Article  CAS  Google Scholar 

  • Salomon H, Karrer P (1932) Pflanzenfarbstoffe XXXVIII. Ein farbstoffaus “rotem” reis, monascin. Helv Chim Acta 15:18–22

    Article  CAS  Google Scholar 

  • Sato K, Iwakami S, Goda Y et al (1992) Novel natural colorants from Monascus anka U-1. Heterocycles 34:2057–2060

    Article  CAS  Google Scholar 

  • Shao Y, Lei M, Mao Z et al (2014) Insights into Monascus biology at the genetic level. Appl Microbiol Biotechnol 98:3911–3922

    Article  CAS  Google Scholar 

  • Shi YC, Liao VHC, Pan TM (2012) Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 52:109–117

    Article  CAS  Google Scholar 

  • Shi K, Song D, Chen G et al (2015) Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation. J Biosci Bioeng 120:145–154

    Article  CAS  Google Scholar 

  • Srianta I, Ristiarini S, Nugerahani I et al (2014) Recent research and development of Monascus fermentation products. Int Food Res J 1:1–12

    Google Scholar 

  • Su J, Zhou B, Peng S, Gan C (1998) Characterization and stabilities of water soluble Monascus yellow pigment. Nat Prod Res Dev 11:57–61

    Google Scholar 

  • Su NW, Lin YL, Lee MH, Ho CY (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on hep G2 cells. J Agric Food Chem 53:1949–1954

    Article  CAS  Google Scholar 

  • Tian Y, Lu H, Zhou B, Zhong H (2014) Effect of amino acid on yellow pigments and citrinin production by Monascus anka mutant. China Brew 33:52–57

    CAS  Google Scholar 

  • Wu MD, Cheng MJ, Yech YJ et al (2011) Monasnicotinates A–D, four new pyridine alkaloids from the fungal strain Monascus pilosus BCRC 38093. Molecules 16:4719–4727

    Article  CAS  Google Scholar 

  • Wu Z, Chen G, Wang M (2015a) Screening and application of Monascus strains with high yield of extracellular yellow pigments. China Patent No. CN201510449543.6

  • Wu Z, Wang M, Chen G (2015b) An approach to achieving extracellular water-soluble Monascus yellow pigment by high carbon resource fermentation and its application. China Patent No. CN201510450416.8

  • Xie N, Liu Q, Chen F (2013) Deletion of pigR gene in Monascus ruber leads to loss of pigment production. Biotechnol Lett 35:1425–1432

    Article  CAS  Google Scholar 

  • Xiong X, Zhang X, Wu Z, Wang Z (2015) Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 99:1173–1180

    Article  CAS  Google Scholar 

  • Yang L, Jiang D, Zhou B et al (2008) Study of stability of Monascus yellow pigment and methods for enhancing its photostability. Mod Food Sci Technol 24:1124–1127

    CAS  Google Scholar 

  • Yang Y, Liu B, Du X et al (2015) Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 5:8331

    Article  CAS  Google Scholar 

  • Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85–90

    Article  CAS  Google Scholar 

  • Yongsmith B, Krairak S, Bavavoda R (1994) Production of yellow pigments in submerged culture of a mutant of Monascus spp. J Ferment Bioeng 78:223–228

    Article  CAS  Google Scholar 

  • Yongsmith B, Thongpradis P, Klinsupa W et al (2013) Fermentation and quality of yellow pigments from golden brown rice solid culture by a selected Monascus mutant. Appl Microbiol Biotechnol 97:8895–8902

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang D, Tang W, Yang C (2015) Study on photostability of water-soluble and alcohol-soluble Monascus pigments. Food Sci 1:94–98

    Google Scholar 

  • Zheng Y, Xin Y, Guo Y (2009) Study on the fingerprint profile of Monascus products with HPLC-FD, PAD and MS. Food Chem 113:705–711

    Article  CAS  Google Scholar 

  • Zhou B, Kang JJ (2012) A temperature-shift strategy in batch Monascus yellow pigments fermentation. Adv Mater Res 550:1327–1335

    Google Scholar 

  • Zhou B, Wang J, Pu Y et al (2009) Optimization of culture medium for yellow pigments production with Monascus anka mutant using response surface methodology. Eur Food Res Techno 228:895–901

    Article  CAS  Google Scholar 

  • Zhou B, Zhong HY, Lin QL (2012) Effect of edible plant oil on yellow pigments production by Monascus anka mutant MYM2. Sci Technol Food Ind 33(92–95):99

    CAS  Google Scholar 

  • Zhou B, Tian Y, Zhong HY (2014) Effect of Tween on Monascus yellow pigment anabolic. Sci Technol Food Ind 35(203–206):210

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 31271925), the Special Project on the Integration of Industry, Education and Research of Guangdong Province, China (No. 2013B090600015), and the Science and Technology Program of Guangzhou, China (No. 2014J4100192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqiang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Wu, Z. Production and biological activities of yellow pigments from Monascus fungi. World J Microbiol Biotechnol 32, 136 (2016). https://doi.org/10.1007/s11274-016-2082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2082-8

Keywords

Navigation