Skip to main content
Log in

Insights into Monascus biology at the genetic level

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus of Monascus was nominated by van Tieghem in 1884, but its fermented product—red mold rice (RMR), namely red yeast rice, has been used as folk medicines, food colorants, and fermentation starters for more than thousands of years in oriental countries. Nowadays, RMR is widely developed as food supplements around the world due to its functional compounds such as monacolin K (MK, also called lovastatin) and γ-aminobutyric acid. But the usage of RMR also incurs controversy resulting from contamination of citrinin (a kind of mycotoxin) produced by some Monascus strains. In the past decade, it has made great progress to Monascus spp. at the genetic level with the application of molecular biology techniques to restrain the citrinin production and increase the yields of MK and pigment in RMR, as well as aid Monascus classification and phylogenesis. Up to now, hundreds of papers about Monascus molecular biology (MMB) have been published in the international primary journals. However, to our knowledge, there is no MMB review issued until now. In this review, current understanding of Monascus spp. from the view of molecular biology will be covered and insights into research areas that need to be further investigated will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

    PubMed  CAS  Google Scholar 

  • Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanish H, Taira J (1999) Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radic Biol Med 286:999–1004

    Google Scholar 

  • Arunachalam C, Narmadhapriya D (2011) Monascus fermented rice and its beneficial aspects: a new review. Asian J Pharm Clin Res 4:29–31

    Google Scholar 

  • Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97:6337–6345

    PubMed  CAS  Google Scholar 

  • Barnard EL, Cannon PF (1987) A new species of Monascus from pine tissues in Florida. Mycologia 79:479–484

    Google Scholar 

  • Blakely GW, Davidson AO, Sherratt DJ (2000) Sequential strand exchange by XerC and XerD during site-specific recombination at dif. J Biol Chem 275:9930–9936

    PubMed  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995a) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    PubMed  CAS  Google Scholar 

  • Blanc PJ, Loret MO, Goma G (1995b) Production of citrinin by various species of Monascus. Biotechnol Lett 17:291–294

    CAS  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 1–9

  • Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    PubMed  CAS  Google Scholar 

  • Brakhagea AA, Schroeckha V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Google Scholar 

  • Cai QM, Jiang DH, Ji H, Lan LJ (2010) Establishment and optimization of Agrobacterium-mediated transformation systems for Monascus purpureus. J Microbiol 30:68–73, Chinese

    CAS  Google Scholar 

  • Campoy S, Pérez F, Martin JF, Gutiérrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452

    PubMed  CAS  Google Scholar 

  • Cannon PF, Abdullah SK, Abbas BA (1995) Two new species of Monascus from Iraq, with a key to known species of the genus. Mycol Res 99:659–662

    Google Scholar 

  • Case ME, Schweizer M, Kunshner SR, Giles N (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259–5263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chang PK, Scharfenstein LL, Wei Q, Bhatnagar D (2010) Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. J Microbiol Meth 81:240–246

    CAS  Google Scholar 

  • Chen FS, Hu XQ (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337

    PubMed  CAS  Google Scholar 

  • Chen Y, Rice PA (2003) New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32:135–159

    PubMed  CAS  Google Scholar 

  • Chen YP, Tseng CP, Liaw LL, Wang CL, Yuan GF (2007) Characterization of MRT, a new non-LTR retrotransposon in Monascus spp. Bot Stud 48:377–385

    CAS  Google Scholar 

  • Chen YP, Chen IQ, Hwang IE, Yuan GF, Ling LL, Tseng CP (2008a) Selection of an effective red-pigment producing Monascus pilosus by efficient transformation with aurintricarboxylic acid. Biosci Biotechnol Biochem 72:3021–3024

    PubMed  CAS  Google Scholar 

  • Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, Wu MD, Yuan GF (2008b) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56:5639–5646

    PubMed  CAS  Google Scholar 

  • Chen YP, Yuan GF, Hsieh SY, Lin YS, Wang WY, Liaw LL, Tseng CP (2010) Identification of the mokH gene encoding transcription factor for the.upregulation of monacolin K biosynthesis in Monascus pilosus. J Agric Food Chem 58:287–293

    PubMed  CAS  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    PubMed  CAS  Google Scholar 

  • da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuBKU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    PubMed Central  PubMed  Google Scholar 

  • de Bekker C, Bruning O, Jonker MJ, Breit TM, Wösten HAB (2011) Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12:R71

    PubMed Central  PubMed  Google Scholar 

  • Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854

    PubMed  CAS  Google Scholar 

  • Endo A, Hasumi K, Negishi S (1985) Monacolin J and L, new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J Antibiot 38:420–422

    PubMed  CAS  Google Scholar 

  • Endo A, Komagata D, Shimada H (1986) Monacolin M: a new inhibitor of cholesterol biosynthesis. J Antibiot 39:1670–1673

    PubMed  CAS  Google Scholar 

  • Fang WG, Pei Y, Bidochka MJ (2007) A regulator of a G protein signaling (RGS) gene, cag8, from the fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 153:1017–1025

    PubMed  CAS  Google Scholar 

  • Fang WG, Scully LR, Zhang L, Pei Y, Bidochka MJ (2008) Implication of a regulator of G protein signalling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 279:146–156

    PubMed  CAS  Google Scholar 

  • Feng YL, Shao YC, Chen FS (2012) Monascus pigment. Appl Microbiol Biotechnol 96:1421–1440

    Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    PubMed  CAS  Google Scholar 

  • Fu GM, Xu Y, Li YP, Tan WH (2007) Construetion of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16(Suppl 1):137–142

    PubMed  CAS  Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    PubMed  Google Scholar 

  • Grabley S, Thiericke R (1999) Drug discovery from nature. Springer, Berlin

    Google Scholar 

  • Hajjaj H, Francois JM, Goma G, Blanc PJ (2012) Effect of amino acids on red pigments and citrinin production in Monascus ruber. J Food Sci 77:156–159

    Google Scholar 

  • Hawksworth DL, Pitt JI (1983) A new taxonomy for Monascus species based on cultural and microscopical characters. Aust J Bot 31:51–61

    Google Scholar 

  • He Y, Liu QP, Shao YC, Chen FS (2013) ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 97:4965–4976

    PubMed  CAS  Google Scholar 

  • Hocking AD, Pitt JI (1988) Two new species of xerophilic fungi and a further record of Eurotium halophilicum. Mycologia 80:82–88

    Google Scholar 

  • Hsu WH, Pan TM (2012) Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol 93:1831–1842

    PubMed  CAS  Google Scholar 

  • Hsu WH, Liao TH, Lee BH, Hsu YW, Pan TM (2013) Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR-c activation. J Funct Foods 5:124–132

    CAS  Google Scholar 

  • Hutchinson CR, Kennedy J, Park C, Kendrew S, Auclair K, Vederas J (2000) Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78:287–295

    PubMed  CAS  Google Scholar 

  • Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metab Eng 12:1–7

    PubMed  CAS  Google Scholar 

  • Jůlová P, Martínkková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzym Microb Technol 16:996–1001

    Google Scholar 

  • Kaplanl O, Bezouška K, Malandra A, VeseláAB PA, Felsberg J, Rinágelová A, Křen V, Martínková L (2011) Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnol Lett 33:309–312

    Google Scholar 

  • Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1992) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372

    Google Scholar 

  • Kim JG, Choi YD, Chang YJ, Kim SU (2003) Genetic transformation of Monascus purpureus DSM1379. Biotechnol Lett 25:1509–1514

    PubMed  CAS  Google Scholar 

  • Kopke K, Hoff B, Kück U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbial 76:4664–4674

    CAS  Google Scholar 

  • Kosalkova K, Garcia-Estrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martin JF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225

    PubMed  CAS  Google Scholar 

  • Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    PubMed  Google Scholar 

  • Lackner G, Misiek M, Braesel J, Hoffmeister D (2012) Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol 49:996–1003

    PubMed  CAS  Google Scholar 

  • Lakrod K, Chaisrisook C, Yongsmith B, Skinner DZ (2000) RAPD analysis of genetic variation within a collection of Monascus spp. isolated from red rice (ang-kak) and sofu. Mycol Res 104:403–408

    CAS  Google Scholar 

  • Lakrod K, Chaisrisook C, Skinner DZ (2003a) Expression of pigmentation genes following electroporation of albino Monascus purpureus. J Ind Microbiol Biotechnol 30:369–374

    Google Scholar 

  • Lakrod K, Chaisrisook C, Daniel ZS (2003b) Transformation of Monascus purpureus to hyromycing B resistance with cosmid pMOcosX reduces fertility. Electron J Biotechnol 6:143–147

    Google Scholar 

  • Lee BN, Adams HT (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    Google Scholar 

  • Lee CL, Pan TM (2011) Red mold fermented products and Alzheimer’s disease: a review. Appl Microbiol Biotechnol 91:461–469

    PubMed  CAS  Google Scholar 

  • Lee BH, Pan TM (2012) Benefit of Monascus-fermented products for hypertension prevention: a review. Appl Microbiol Biotechnol 94:1151–1161

    PubMed  CAS  Google Scholar 

  • Lee BH, Pan TM (2013) Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: mini review. J Funct Foods 5:2–9

    CAS  Google Scholar 

  • Lee CL, Hung HK, Wang JJ, Pan TM (2007) Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. J Agric Food Chem 55:6493–6502

    PubMed  CAS  Google Scholar 

  • Lee SS, Lee JH, Lee I (2013) Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of Monascus-fermented rice. J Microbiol Biotechnol 23:959–965

    PubMed  CAS  Google Scholar 

  • Li ZQ (1982) A new species of the genus Monascus aurantiacus. Acta Microbiol Sin 22:118–122, Chinese

    Google Scholar 

  • Li ZQ, Guo F (2003) Morphology and taxonomy of Monascus. Chinese Light Industry Press, Beijing

    Google Scholar 

  • Li LD, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452

    PubMed  CAS  Google Scholar 

  • Li L, Shao YC, Li Q, Yang S, Chen FS (2010a) Identification of Mga1, a G-protein α-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7. FEMS Microbiol Lett 308:108–114

    PubMed  CAS  Google Scholar 

  • Li ZH, Du CM, Zhong YH, Wang TH (2010b) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87:1065–1076

    PubMed  CAS  Google Scholar 

  • Li YP, Xu Y, Huang ZB (2012) Isolation and characterization of the citrinin biosynthetic gene cluster from Monascus aurantiacus. Biotechnol Lett 34:131–136

    PubMed  Google Scholar 

  • Li YP, Pan YF, Zou LH, Xu Y, Huang ZB, He QH (2013) Lower citrinin production by gene disruption of ctnB involved in citrinin biosynthesis in Monascus aurantiacus Li AS3.4384. J Agric Food Chem 61:7397–7402

    Google Scholar 

  • Li L, He L, Lai Y, Shao YC, Chen FS (2014) Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. J Microbiol 52:35–43

    PubMed  CAS  Google Scholar 

  • Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus- fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    PubMed  CAS  Google Scholar 

  • Liu MT, Wang AL, Sun Z, Li JJ, Wu XL, Liu YX, Shang XY (2003) Cytotoxic monacolin analogs from Monascus purpureus-fermented rice. J Asian Nat Prod Res 15:600–609

    Google Scholar 

  • Liu QP, Xie NN, He Y, Wang L, Shao YC, Zhao HZ, Chen FS (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296

    PubMed  CAS  Google Scholar 

  • Mah JH, Yu JH (2006) Upstream and downstream regulation of asexual development in Aspergillus fumigates. Eukaryotic Cell 10:1585–1595

    Google Scholar 

  • Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 54:301–309

    PubMed  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv 26:177–185

    PubMed  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CAMJJ, Ram AFJ (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    PubMed  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJJ, van den Hondel CA, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    PubMed  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Google Scholar 

  • Park HG, Jong SC (2003) Molecular characterization of Monascus strains based on the D1/D2 regions of LSU rRNA genes. Mycoscience 44:25–32

    Google Scholar 

  • Park HG, Elena KS, Jong SC (2004) Phylogenetic relationships of Monascus species inferred from the ITS and the partial β-tubulin gene. Bot Bull Acad Sin 45:325–330

    Google Scholar 

  • Patakova P (2013) A review: Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181

    PubMed  CAS  Google Scholar 

  • Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126:20–23

    PubMed  CAS  Google Scholar 

  • Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    Google Scholar 

  • Rank C, Klejnstrup ML, Petersen LM, Kildgaard S, Frisvad JC, Gotfredsen CH, Larsen TO (2012) Comparative chemistry of Aspergillus oryzae (RIB40) and A .flavus (NRRL 3357). Metabolites 2:39–56

    CAS  Google Scholar 

  • Royer M, Koebnik R, Marguerettaz M, Barbe V, Robin GP, Brin C, Carrere S, Gomez C, Hügelland M, Völler GH, Noëll J, Pierett I, Rausch S, Verdier V, Poussier S, Rott P, Süssmuth RD, Cociancich S (2013) Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics 14:1–19

    Google Scholar 

  • Sakai K, Kinoshita H, Shimizu T, Nihira T (2008) Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng 106:466–472

    PubMed  CAS  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2009) Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol Lett 31:1911–1916

    Google Scholar 

  • Segers GC, Regier JC, Nuss DL (2004) Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Ga subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight ungus Cryphonectria parasitica. Eukaryotic Cell 3:1454–1463

    PubMed Central  PubMed  CAS  Google Scholar 

  • Servin JA, Campbell AJ, Borkovich KA (2012) G-protein signaling components in filamentous fungal genomes. In: Witzany G (ed) Biocommunication of Fungi. Springer, Berlin, pp 21–38

    Google Scholar 

  • Shao YC, Wang RY, Ding YD, Chen FS, Xie BJ (2006) Construction of T-DNA insertional library of Monascus mediated by Agrobacterium tumefaciens and characteristic analysis of the color mutants. Mycosystema 25:247–255, Chinese

    CAS  Google Scholar 

  • Shao YC, Ding YD, Zhao Y, Yang S, Xie BJ, Chen FS (2009) Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World J Microbiol Biotechnol 25:989–995

    CAS  Google Scholar 

  • Shao YC, Xu L, Chen FS (2011) Genetic diversity analysis of Monascus strains using SRAP and ISSR markers. Mycoscience 52:224–233

    Google Scholar 

  • Shi YC, Pan TM (2011) Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Appl Microbiol Biotechnol 90:1207–1217

    PubMed  CAS  Google Scholar 

  • Shi YC, Pan TM (2012) Red mold, diabetes, and oxidative stress: a review. Appl Microbiol Biotechnol 94:47–55

    PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 71:3453–3457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2006) Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol Lett 28:115–120

    PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73:5097–5103

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N (2009) Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 9:7–19

    PubMed  CAS  Google Scholar 

  • Shinzato N, Namihira T, Tamaki Y, Tsukahara M, Matsui T (2009) Application of random amplified polymorphic DNA (RAPD) analysis coupled with microchip electrophoresis for high-resolution identification of Monascus strains. Appl Microbiol Biotechnol 82:1187–1193

    PubMed  CAS  Google Scholar 

  • Sorensen JL, Auclair K, Kennedy J, Hutchinson CR, Vederas JC (2003a) Transformations of cyclic nonaketides by Aspergillus terreus mutants blocked for lovastatin biosynthesis at the lov A and lov C genes. Org Biomol Chem 1:50–59

    PubMed  CAS  Google Scholar 

  • Sorensen JL, Vederas JC, Monacolin N (2003b) A compound resulting from derailment of type I iterative polyketide synthase functionen route to lovastatin. Chem Commun 13:1492–1493

    Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    PubMed  CAS  Google Scholar 

  • Stchigel AM, Cano J, Abdullah SK, Guarro J (2004) New and interesting species of Monascus from soil, with a key to the known species. Stud Mycol 50:299–306

    Google Scholar 

  • Su YC, Wang JJ, Lin TT, Pan TM (2003) Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:40–46

    Google Scholar 

  • Sun JB, Lu X, Rinas U, Zeng AP (2007) Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biol 8:R182

    PubMed Central  PubMed  Google Scholar 

  • Sweeney MJ, Dobson A (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int J Food Microbiol 43:141–158

    PubMed  CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic, London

    Google Scholar 

  • Udagawa SI, Baba H (1998) Monascus lunisporas: a new species isolated from moldy feeds. Cryptogam Mycol 19:269–276

    Google Scholar 

  • Van Duyne GD (2001) A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87–104

    PubMed  Google Scholar 

  • Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45:68–75

    PubMed  CAS  Google Scholar 

  • Wang YZ, Ju XL, Zhou YG (2005) The variability of citrinin production in Monascus type cultures. Food Microbiol 22:145–148

    CAS  Google Scholar 

  • Wang BH, Xu Y, Li YP (2010) Use of the pyrG gene as a food-grade selection marker in Monascus. Biotechnol Lett 32:1631–1635

    Google Scholar 

  • Wang L, Wang W, Xu GR (2011) Promotion of monacolin K production by Agrobacterium tumefaciens—mediated transformation in Monascus albidus 9901. Curr Microbiol 62:501–507

    PubMed  CAS  Google Scholar 

  • Weber SS, Bovenberg RAL, Driessen AJM (2012) Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. Biotechnol J 7:225–236

    PubMed  CAS  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    PubMed  CAS  Google Scholar 

  • Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CC, Keller NP (2013) Prototype of an intertwined secondary metabolite supercluster. Proc Natl Acad Sci U S A 110:17065–17070

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wong HC, Koehler P (1981) Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J Food Sci 46:589–592

    CAS  Google Scholar 

  • Xie NN, Liu QP, Chen FS (2013) Deletion of pigR gene in Monascus ruber leads to loss of pigment production. Biotechnol Lett 35:1425–1432

    PubMed  CAS  Google Scholar 

  • Yang YJ, Lee IH (2008) Agrobactrium tumefaciens-mediated transformation of Monascus ruber. J Microbiol Biotechnol 18:754–758

    PubMed  CAS  Google Scholar 

  • Yang YS, Li L, Li X, Shao YC, Chen FS (2012) mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M7. Fungal Biol 116:225–233

    PubMed  CAS  Google Scholar 

  • Yu JH (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulan. J Microbiol 44:145–154

    PubMed  CAS  Google Scholar 

  • Yu JH, Keller NP (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    PubMed  CAS  Google Scholar 

  • Zhang MY, Miyake T (2007) Identification of a cerulenin resistance gene from Monascus pilosus. DNA Seq 18:68–72

    PubMed  CAS  Google Scholar 

  • Zhang MY, Miyake T (2009) Development and media regulate alternative splicing of a methyltransferase Pre-mRNA in Monascus pilosus. J Agric Food Chem 57:4162–4167

    PubMed  CAS  Google Scholar 

  • Zhang T, Qi Z, Wang YY, Zhang FY, Li RY, Yu QS, Chen XB, Wang HJ, Xiong X, Tang KX (2013) Agrobacterium tumefaciens-mediated transformation of Penicillium expansum PE-12 and its application in molecular breeding. Microbiol Res 168:130–137

    PubMed  CAS  Google Scholar 

  • Zhou LH,Wang ZX, Zhu-Ge J (2006) Comparison of different transformation methods for Monascus sp. Hereditas 479– 485, Chinese

  • Zhou YX, Chen JB, Dong LN, Chen FS, Hu DJ, Wang XH (2012) A study of fluorescence properties of citrinin in beta-cyclodextrin aqueous solution and different solvents. J Lumin 132:1437–1445

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the members of Food Biotechnology and Food Safety Laboratory in Huazhong Agricultural University in Wuhan of China for their dedicated work. Research in Monascus spp. is supported by Major Program of National Natural Science Foundation of China (no. 31330059) and National Natural Science Foundation of China (nos. 31271834, 31171649, and 31371824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Y., Lei, M., Mao, Z. et al. Insights into Monascus biology at the genetic level. Appl Microbiol Biotechnol 98, 3911–3922 (2014). https://doi.org/10.1007/s00253-014-5608-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5608-8

Keywords

Navigation