Skip to main content
Log in

Updates on industrial production of amino acids using Corynebacterium glutamicum

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Amino acids find various applications in biotechnology. l-Glutamic acid and its salts are used as flavor enhancers. Other l-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. l-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of l-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A (2013) Direct l-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol 97:7165–7172. doi:10.1007/s00253-013-5009-4

    Article  CAS  Google Scholar 

  • Adham SA, Honrubia P, Diaz M, Fernandez-Abalos JM, Santamaria RI, Gil JA (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97. doi:10.1007/s00203-001-0365-3

    Article  CAS  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    Article  CAS  Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  Google Scholar 

  • Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866

    Article  CAS  Google Scholar 

  • Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J (2013) Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol 79:6006–6015. doi:10.1128/AEM.01634-13

    Article  CAS  Google Scholar 

  • Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774. doi:10.1099/00221287-147-7-1765

    Article  CAS  Google Scholar 

  • Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40. doi:10.1186/gb-2012-13-5-r40

    Article  CAS  Google Scholar 

  • Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41:6360–6369. doi:10.1093/nar/gkt312

    Article  CAS  Google Scholar 

  • Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of l-lysine production strains. Appl Microbiol Biotechnol 86:1313–1322. doi:10.1007/s00253-010-2537-z

    Article  CAS  Google Scholar 

  • Buschke N, Schroder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317. doi:10.1002/biot.201000304

    Article  CAS  Google Scholar 

  • Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ (2015) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 14:21. doi:10.1186/s12934-015-0205-9

    Article  Google Scholar 

  • Cleto S, Jensen JV, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. doi:10.1021/acssynbio.5b00216

    Google Scholar 

  • de Lorenzo V (2015) Chassis organism from Corynebacterium glutamicum: the way towards biotechnological domestication of Corynebacteria. Biotechnol J 10:244–245. doi:10.1002/biot.201400493

    Article  Google Scholar 

  • Eberhardt D, Jensen JV, Wendisch VF (2014) l-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85. doi:10.1186/s13568-014-0085-0

    Article  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton

    Book  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140(Pt 8):1817–1828. doi:10.1099/13500872-140-8-1817

    Article  CAS  Google Scholar 

  • Feher T, Papp B, Pal C, Posfai G (2007) Systematic genome reductions: theoretical and experimental approaches. Chem Rev 107:3498–3513. doi:10.1021/cr0683111

    Article  CAS  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Article  CAS  Google Scholar 

  • Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM (2011) Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol 92:985–996. doi:10.1007/s00253-011-3478-x

    Article  CAS  Google Scholar 

  • Hao N, Mu J, Hu N, Xu S, Yan M, Li Y, Guo K, Xu L (2015) Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J Ind Microbiol Biotechnol 42:307–313. doi:10.1007/s10295-014-1561-x

    Article  CAS  Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137–149. doi:10.1111/j.1365-2958.2004.04386.x

    Article  CAS  Google Scholar 

  • Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF (2014) Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front Bioeng Biotechnol 2:28. doi:10.3389/fbioe.2014.00028

    Article  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362. doi:10.1155/2012/921362

    Article  Google Scholar 

  • Hwang JH, Hwang GH, Cho JY (2008) Effect of increased glutamate availability on l-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18:704–710

    CAS  Google Scholar 

  • Hyeon JE, Jeon WJ, Whang SY, Han SO (2011) Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 48:371–377. doi:10.1016/j.enzmictec.2010.12.014

    Article  CAS  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75:1635–1641. doi:10.1128/AEM.02027-08

    Article  CAS  Google Scholar 

  • Jensen JV, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63. doi:10.1186/1475-2859-12-63

    Article  CAS  Google Scholar 

  • Jensen JV, Eberhardt D, Wendisch VF (2015) Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 214:85–94. doi:10.1016/j.jbiotec.2015.09.017

    Article  CAS  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428. doi:10.1128/AEM.72.5.3418-3428.2006

    Article  CAS  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062. doi:10.1007/s00253-007-1244-x

    Article  CAS  Google Scholar 

  • Kawasaki N, Nakayama A, Yamano N, Takeda S, Kawata Y, Yamamoto N, Aiba S (2005) Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 46:9987–9993. doi:10.1016/j.polymer.2005.06.092

    Article  CAS  Google Scholar 

  • Kim DJ, Hwang GH, Um JN, Cho JY (2015a) Increased l-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase. J Mol Microbiol Biotechnol 25:45–50. doi:10.1159/000375124

    Article  CAS  Google Scholar 

  • Kim EM, Um Y, Bott M, Woo HM (2015b) Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. FEMS Microbiol Lett. doi:10.1093/femsle/fnv161

    Google Scholar 

  • Kim SY, Lee J, Lee SY (2015c) Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 112:416–421. doi:10.1002/bit.25440

    Article  CAS  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (2004) Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 50:331–343

    Google Scholar 

  • Kortmann M, Kuhl V, Klaffl S, Bott M (2015) A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol 8:253–265. doi:10.1111/1751-7915.12236

    Article  CAS  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580. doi:10.1099/mic.0.26053-0

    Article  CAS  Google Scholar 

  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135. doi:10.1186/s13068-014-0135-5

    Article  Google Scholar 

  • Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol 158:231–241. doi:10.1016/j.jbiotec.2011.06.003

    Article  CAS  Google Scholar 

  • Lee SY, Le TH, Chang ST, Park JS, Kim YH, Min J (2010) Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum. Curr Microbiol 61:596–600. doi:10.1007/s00284-010-9658-6

    Article  CAS  Google Scholar 

  • Lee J, Saddler JN, Um Y, Woo HM (2016) Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb Cell Fact 15:20. doi:10.1186/s12934-016-0420-z

    Article  Google Scholar 

  • Leprince A, de Lorenzo V, Voller P, van Passel MW, Martins dos Santos VA (2012) Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol 14:1444–1453. doi:10.1111/j.1462-2920.2012.02730.x

    Article  CAS  Google Scholar 

  • Mampel J, Buescher JM, Meurer G, Eck J (2013) Coping with complexity in metabolic engineering. Trends Biotechnol 31:52–60. doi:10.1016/j.tibtech.2012.10.010

    Article  CAS  Google Scholar 

  • Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, Tohata M, Ara K, Ozaki K, Ogasawara N (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77:8370–8381. doi:10.1128/AEM.06136-11

    Article  CAS  Google Scholar 

  • Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM (2014) Engineering of Corynebacterium glutamicum for growth and l-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 98:5633–5643. doi:10.1007/s00253-014-5676-9

    Article  CAS  Google Scholar 

  • Matsui D, Oikawa T (2010) Detection of d-ornithine extracellularly produced by Corynebacterium glutamicum ATCC 13032:argF. Biosci Biotechnol Biochem 74:2507–2510

    Article  CAS  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140. doi:10.1111/1751-7915.12001

    Article  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65. doi:10.1007/s00284-005-4531-8

    Article  CAS  Google Scholar 

  • Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14:449–457. doi:10.1016/j.ymben.2012.02.002

    Article  CAS  Google Scholar 

  • Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9:e85731. doi:10.1371/journal.pone.0085731

    Article  Google Scholar 

  • Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20. doi:10.1186/s13568-014-0020-4

    Article  Google Scholar 

  • Paradis FW, Warren RA, Kilburn DG, Miller RC Jr (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61:199–206

    Article  CAS  Google Scholar 

  • Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 36:885–892. doi:10.1007/s00449-012-0821-2

    Article  CAS  Google Scholar 

  • Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 5:4618. doi:10.1038/ncomms5618

    CAS  Google Scholar 

  • Qi SW, Chaudhry MT, Zhang Y, Meng B, Huang Y, Zhao KX, Poetsch A, Jiang CY, Liu S, Liu SJ (2007) Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7:3775–3787. doi:10.1002/pmic.200700481

    Article  CAS  Google Scholar 

  • Qiao Y, Peng Q, Yan J, Wang H, Ding H, Shi B (2015) Gene cloning and enzymatic characterization of alkali-tolerant type I pullulanase from Exiguobacterium acetylicum. Lett Appl Microbiol 60:52–59. doi:10.1111/lam.12333

    Article  CAS  Google Scholar 

  • Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222. doi:10.1128/AEM.00963-08

    Article  CAS  Google Scholar 

  • Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11:144. doi:10.1186/1475-2859-11-144

    Article  CAS  Google Scholar 

  • Rumbold K, van Buijsen HJ, Gray VM, van Groenestijn JW, Overkamp KM, Slomp RS, van der Werf MJ, Punt PJ (2010) Microbial renewable feedstock utilization: a substrate-oriented approach. Bioeng Bugs 1:359–366. doi:10.4161/bbug.1.5.12389

    Article  Google Scholar 

  • Salvatore F, Cimino F, Dayello Caracciolo M, Cittadini D (1964) Mechanism of the protection by l-Ornithine-l-Aspartate mixture and by l-Arginine in ammonia intoxication. Arch Biochem Biophys 107:499–503

    Article  CAS  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115. doi:10.1007/s00253-009-2065-x

    Article  CAS  Google Scholar 

  • Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29. doi:10.1021/sb400059y

    Article  CAS  Google Scholar 

  • Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198. doi:10.1016/j.jbiotec.2010.07.009

    Article  CAS  Google Scholar 

  • Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391. doi:10.1016/j.jbiotec.2005.12.027

    Article  CAS  Google Scholar 

  • Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncg12319 and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol Lett 26:575–580

    Article  CAS  Google Scholar 

  • Shen X-H, Huang Y, Liu S-J (2005a) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microb Environ 20(3):160–167. doi:10.1264/jsme2.20.160

    Article  Google Scholar 

  • Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ (2005b) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71:3442–3452. doi:10.1128/AEM.71.7.3442-3452.2005

    Article  CAS  Google Scholar 

  • Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89. doi:10.1007/s00253-012-4139-4

    Article  CAS  Google Scholar 

  • Shi HP, Fishel RS, Efron DT, Williams JZ, Fishel MH, Barbul A (2002) Effect of supplemental ornithine on wound healing. J Surg Res 106:299–302

    Article  CAS  Google Scholar 

  • Shi F, Jiang J, Li Y, Li Y, Xie Y (2013) Enhancement of gamma-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40:1285–1296. doi:10.1007/s10295-013-1316-0

    Article  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480. doi:10.1128/AEM.71.12.8472-8480.2005

    Article  CAS  Google Scholar 

  • Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51:171–176. doi:10.1016/j.enzmictec.2012.05.010

    Article  CAS  Google Scholar 

  • Tateno T, Fukuda H, Kondo A (2007) Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541. doi:10.1007/s00253-007-1191-6

    Article  CAS  Google Scholar 

  • Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R (2005) Characterization of methionine export in Corynebacterium glutamicum. J Bacteriol 187:3786–3794. doi:10.1128/JB.187.11.3786-3794.2005

    Article  Google Scholar 

  • Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 97:1679–1687. doi:10.1007/s00253-012-4313-8

    Article  CAS  Google Scholar 

  • Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S (2015a) Chassis organism from Corynebacterium glutamicum—a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10:290–301. doi:10.1002/biot.201400041

    Article  CAS  Google Scholar 

  • Unthan S, Radek A, Wiechert W, Oldiges M, Noack S (2015b) Bioprocess automation on a mini pilot plant enables fast quantitative microbial phenotyping. Microb Cell Fact 14:32. doi:10.1186/s12934-015-0216-6

    Article  Google Scholar 

  • van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081. doi:10.1002/bit.24486

    Article  Google Scholar 

  • Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58. doi:10.1016/j.copbio.2014.05.004

    Article  CAS  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energy Environ 24(1):189–226

    Article  Google Scholar 

  • Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004. doi:10.5936/csbj.201210004

    Article  Google Scholar 

  • Zhou LB, Zeng AP (2015a) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340. doi:10.1021/acssynbio.5b00075

    Article  CAS  Google Scholar 

  • Zhou LB, Zeng AP (2015b) Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4:729–734. doi:10.1021/sb500332c

    Article  CAS  Google Scholar 

Download references

Funding information

João M.P. Jorge and Fernando Pérez-García are fellows of the CLIB2021 graduate cluster at Bielefeld University. Support by Grant KF2969004SB4 from ZIM, BMWi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendisch, V.F., Jorge, J.M.P., Pérez-García, F. et al. Updates on industrial production of amino acids using Corynebacterium glutamicum . World J Microbiol Biotechnol 32, 105 (2016). https://doi.org/10.1007/s11274-016-2060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2060-1

Keywords

Navigation