Skip to main content

Advertisement

Log in

Microbial transport: Adaptations to natural environments

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The cytoplasmic membrane of bacteria is the matrix for metabolic energy transducing processes such as proton motive force generation and solute transport. Passive permeation of protons across the cytoplasmic membrane is a crucial determinant in the proton motive generating capacity of the organisms. Adaptations of the membrane composition are needed to restrict the proton permeation rates especially at higher temperatures. Thermophilic bacteria cannot sufficiently restrict this proton permeation at their growth temperature and have to rely on the much␣lower permeation of Na + to generate a sodium motive force for driving metabolic energy-dependent membrane processes. Specific transport systems mediate passage across the membrane at physiological rates of all compounds needed for growth and metabolism and of all end products of metabolism. Some of transport systems, the secondary transporters, transduce one form of electrochemical energy into another form. These transporters can play crucial roles in the generation of metabolic energy. This is especially so in anaerobes such as Lactic Acid Bacteria which live under energy-limited conditions. Several transport systems are specifically aimed at the generation of metabolic energy during periods of energy-limitation. In their natural environment bacteria are also often exposed to cytotoxic compounds, including antibiotics. Many bacteria can respond to this live-threatening condition by overexpressing powerful drug-extruding multidrug resistance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K, Hayashi H, Maloney PC (1996) Exchange of aspartate and alanine. J Biol Chem 271:3079–3084

    Article  PubMed  CAS  Google Scholar 

  • Abdedal AT (1979) Arginine catabolism by microorganisms. Ann Rev Microbiol 33:139–168

    Article  Google Scholar 

  • Bandell M, Lhotte ME, Marty-Teysset C, Veyrat A, Prevost H, Divies C, Konings WN, Lolkema JS (1998) The mechanism of citrate transporters in carbohydrate and citrate metabolism in Lactococcus and Leuconostoc species. Appl Environ Microbiol 64:1594–1600

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Choquet CG, Patel GB, Sprott GD (1993) Freeze fracture planes of methanogen membranes correlate with the content of tetraether lipids. J Bacteriol 175:1191–1197

    PubMed  CAS  Google Scholar 

  • Bolhuis H, Molenaar D, Poelarends G, van Veen HW, Poolman B, Driessen AJM, Konings WN (1994) Proton motive force driven and ATP-dependent drug extrusion systems in multidrug resistant Lactococcus lactis. J Bacteriol 176:6957–6964

    PubMed  CAS  Google Scholar 

  • Bolhuis H, Molenaar D, van Veen HW, Poolman B, Driessen AJM, Konings WN (1996b) Multidrug resistance in Lactococcus lactis: Evidence for ATP-dependent extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J 15:4239–4245

    CAS  Google Scholar 

  • Bolhuis H, Poelarends GJ, van Veen HW, Poolman B, Driessen AJM, Konings WN (1995) The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J Biol Chem 270:26092–26098

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H, van Veen HW, Brands JR, Putman M, Poolman B, Driessen AJM, Konings WN (1996a) Energetics and mechanism of drug transport by the lactococcal multidrug transporter LmrP. J Biol Chem 271:24123–24128

    Article  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  PubMed  CAS  Google Scholar 

  • Choquet CG, Patel GB, Beveridge TJ, Sprott GD (1992) Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl Environ Microbiol 58:2894–2900

    PubMed  CAS  Google Scholar 

  • Crow VL, Thomas TD (1982) Arginine metabolism in Lactic Streptococci. J Bacteriol 150:1024–1032

    PubMed  CAS  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dessimination of resistance genes. Science 264: 375–382

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153–175

    Article  PubMed  Google Scholar 

  • De Rosa M, Trincone A, Nicolaus B, Gambacorta A (1991) Archaebacteria: lipids, membrane structures, and adaptations to environmental stresses. In: di Prisco G (ed) Life under extreme conditions. Springer-Verlag, Berlin Heidelberg, pp 61–87

    Google Scholar 

  • Dicks LMT, Dellaglio F, Collins MD (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen.nov., comb.nov. Int J Syst Bacteriol 45:395–397

    PubMed  CAS  Google Scholar 

  • Driessen AJM, Konings WN (1990) Energetic problems of Bacterial fermentations: extrusion of metabolic endproducts. In: Krulwich TA (ed) The Bacteria Vol XII, Chapter 15. Academic Press, San Diego, pp 449– 478

    Google Scholar 

  • Driessen AJM, Poolman B, Kiewiet R, Konings WN (1987) Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc Natl Acad Sci USA 84:6093–6097

    Article  PubMed  CAS  Google Scholar 

  • Elferink MGL, DeWit JG, Demel R, Driessen AJM, Konings WN (1992) Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J Biol Chem 267:1375–1381

    PubMed  CAS  Google Scholar 

  • Esser AF, Souza KA (1974) Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus. Proc Natl Acad Sci USA 71:4111–4115

    Article  PubMed  CAS  Google Scholar 

  • Gale EF (1946) The bacterial amino acid decarboxylases. Adv Enzymol 6:1–32

    CAS  Google Scholar 

  • Gaughran ERL (1947) The saturation of bacterial lipids as a function of temperature. J Bacteriol 53:506

    CAS  PubMed  Google Scholar 

  • Glaasker E, Konings WN, Poolman B (1996) Osmotic regulation of intracellular pools in Lactobacillus plantarum. J Bacteriol 178:575–582

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Hrycyna CA, Schoenlein PV, German UA, Pastan I (1995) Genetic analysis of the multidrug transporter. Annu Rev Genet 29:606–649

    Article  Google Scholar 

  • Hanke ME, Koesler KK (1924) Studies on proteinogenous amines. J Biol Chem 59:835–855

    CAS  Google Scholar 

  • Hoffmeyr JH, Rohwer JM, Snoep JJ, Westerhoff HV, Konings WN (2002) How to distinguish between the vacuum cleaner and flippase mechanisms of LmrA multidrug transporter in Lactococcus lactis. Mol Biol Rep 29:107–112

    Article  Google Scholar 

  • Higuchi T, Hayashi H, Abe K (1993) Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain. J␣Bacteriol 179:3362–3364

    Google Scholar 

  • Jiang W, Hermolin J, Fillingame R (2001) The preferred stoichiometry of c subunits in the rotary sector of Eschericha coli ATPase synthase is 10. Proc Natl Acad Sci USA 98:237–241

    Google Scholar 

  • Kates M (1996) Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J␣Microbiol Meth 25:113–128

    Article  CAS  Google Scholar 

  • Kates M, Moldoveanu N, Stewart LC (1993) On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta 1169:46–53

    PubMed  CAS  Google Scholar 

  • Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosynthesis. Microbiol Rev 57:164–182

    PubMed  CAS  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of Lactic Acid Bacteria. Antonie van Leeuwenhoek 82:3–27

    Article  PubMed  CAS  Google Scholar 

  • Konings WN, Albers SV, Koning SM, Driessen AJM (2003) Survival strategies and membrane properties of bacteria and archaea in extreme environments. In: The encyclopedia of life support systems, EOLSS Publishers Co Ltd, Oxford, UK

  • Konings WN, Lolkema JS, Poolman B (1995) The generation of metabolic energy by solute transport. Arch Microbiol 164:235–242

    Article  CAS  Google Scholar 

  • Konings WN, Otto R (1983) Energy transduction and solute transport in streptococci. Antonie van Leeuwenhoek 49:247–257

    Article  PubMed  CAS  Google Scholar 

  • Konings WN, Poolman B, Driessen AJM (1989) Bioenergetics of solute transport in lactococci. CRC Critic Rev Microbiol 16:419–476

    CAS  Google Scholar 

  • Konings WN, Velkamp H (1983) Energy transduction and solute transport mechanisms in relation to environments occupied by microorganisms. Microbes in their natural environments, Symp Soc General Microbiol 34:153–186

    Google Scholar 

  • Kunkee RE (1991) Some roles of malic acid in the malolactic fermentation in wine making. FEMS Microbiol Rev 88:55–72

    Article  CAS  Google Scholar 

  • Lagerborg VA, Clapper WE (1952) Amino acid decarboxylases of lactic acid bacteria. J Bacteriol 63:393–397

    PubMed  CAS  Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends Biochem Sci 19:119–123

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, MR,Webb RI, Strous M, Jetten MSM, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organization for the bacterial cell. Arch Microbiol 175:413–429

    Article  PubMed  CAS  Google Scholar 

  • Lubelski J, Mazurkiewicz P, Merkerk R, Konings WN, Driessen AJ (2004) YdaG and ydbA of Lactococcus lactis encode a heterodimeric ABC-type multidrug transporter. J Biol Chem 279:34449–34455

    Article  PubMed  CAS  Google Scholar 

  • Magni C, de Mendoza D, Konings WN, Lolkema JS (1999) Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. J␣Bacteriol 181:1451–1457

    PubMed  CAS  Google Scholar 

  • Maloney PC (1977) Obligatory coupling between proton entry and the synthesis of ATP by Streptococcus lactis. J Bacteriol 132:564–575

    PubMed  CAS  Google Scholar 

  • Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17:263–316

    Article  CAS  Google Scholar 

  • Marshall VM (1987) Lactic acid bacteria: starters for flavour. FEMS Microbiol Rev 46:327–336

    Article  CAS  Google Scholar 

  • Marquis RE, Bender GR, Murray DR, Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environment. Appl Env Microbiol 53:198–200

    CAS  Google Scholar 

  • Marty-Teysset C, Postma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol 178:2178– 2185

    PubMed  CAS  Google Scholar 

  • Mazurkiewicz P, Sakamoto K, Poelarends GJ, Konings WN (2005) Multidrug transporters in Lactic Acid Bacteria. Med Chem 5:173–181

    CAS  Google Scholar 

  • Michels PAM, Michels JPJ, Boonstra J, Konings WN (1979) Generation of electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol Lett 5:357–364

    Article  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall, England

  • Molenaar D, Bolhuis H, Abee T, Poolman B, Konings WN␣(1992) The efflux of a fluorescent probe is catalyzed by an ATP driven extrusion system in Lactococcus lactis J. Bacteriol. 174:3118–3124

  • Molenaar D, Bosscher JS, ten Brink B, Driessen AJM, Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175:2864–2870

    PubMed  CAS  Google Scholar 

  • Mundt JO (1982) The ecology of Streptococci. Microbial Ecol 8:355–369

    Article  Google Scholar 

  • Otto R (1981) An ecophysiological study of starter streptococci. Ph.D thesis, University of Groningen, The Netherlands

  • Otto R, Hugenholtz J, Konings WN, Veldkamp H (1980a) Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stutzeri in mixed cultures. FEMS Microbiol Lett 9:85–88

    Article  CAS  Google Scholar 

  • Otto R, Sonnenberg ASM, Veldkamp H, Konings WN (1980b) Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. USA 77:5502–5506

    Google Scholar 

  • Otto R, Lageveen RG, Veldkamp H, Konings WN (1982) Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J Bacteriol 149:733–738

    PubMed  CAS  Google Scholar 

  • Patel BKC, Monk C, Littleworth H, Morgan HW, Daniel RM (1987) Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37:123–126

    Article  CAS  Google Scholar 

  • Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G, Teuber M (1997) Antibiotic resistance spread in food. Nature 389:801–802

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky A, Gadzar C (1979) Escherichia coli adenylate cyclase complex: Regulation by the proton electyrochemical gradient. Proc Natl Acad Sci USA 76:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Poelarends GJ, Vigano C, Ruysschaert J-M, Konings WN (2002) Bacterial multidrug resistance mediated by ABC-transporters. In: Cole SPC, Kuchler K, Higgins CF (eds) ABC proteins: from bacteria to man. Academic Press, Amsterdam IB Holland, pp 243–263

    Google Scholar 

  • Poolman B (1987) Energy transducing processes in growing and starving Lactococcus lactis. Ph.D. thesis, University of Groningen, The Netherlands

  • Poolman B, Bosman B, Kiers J, Konings WN (1987a) Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J Bacteriol 169:5887–5890

    CAS  Google Scholar 

  • Poolman B, Driessen AJM, Konings WN (1987b) Regulation of solute transport in Streptococci by external and internal pH values. Microbiol Rev 51:498–508

    CAS  Google Scholar 

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: Electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037

    PubMed  CAS  Google Scholar 

  • Prado A, Da Costa MS, Madeira VMC (1988) Effect of growth temperature on the lipid composition of two strains of Thermus sp. J Gen Microbiol 134:1653–1660

    CAS  Google Scholar 

  • Putman M, van Veen HW, Konings WN (2000a) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672– 693

    Article  CAS  Google Scholar 

  • Putman M, van Veen HW, Degener JE, Konings WN (2000b) Antibiotic resistance: era of the multidrug pump. Mol Microbiol 36:772–774

    Article  CAS  Google Scholar 

  • Putman M, van Veen HW, Degener JE, Konings WN (2001) The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. Microbiology 147:2873–2880

    PubMed  CAS  Google Scholar 

  • Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol 176:4899–4905

    PubMed  CAS  Google Scholar 

  • Reizer J, Grossowicz N, Barenholz Y (1985) The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition–structure–function relationships. Biochim Biophys Acta 815:268–280

    Article  PubMed  CAS  Google Scholar 

  • Rice SL, Koehler PE (1976) Tyrosine and histidine decarboxylkase activities of Pediococcus cerevisiae and Lactobacillus sp. And the production of tyramone in fermented sausages. J Milk Food Technol 39:166–169

    CAS  Google Scholar 

  • Rodwell AW (1953) The occurrence and distribution of amino acid decarboxylases within the genus Lactobacillus. J Gen Microbiol 8:224–232

    PubMed  CAS  Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  • Sakamoto K, Margolles A, van Veen HW, Konings (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375

    Article  PubMed  CAS  Google Scholar 

  • Salema M, Poolman B, Lolkema JS, Louriero Dias MC, Konings WN (1994) Uniport of monoionic l-malate in membrane vesicles from Leuconostoc oenos. Eur J Biochem 225:289–295

    Article  PubMed  CAS  Google Scholar 

  • Sami M, Yamahita H, Hirono T, Kadokura H, Kitamoto K,Yoda K, Yamasaki M (1997) Hop-resistant Lactobacillus brevis contains a novel plamid harboring a multidrug resistance-like gene. J Ferment Bioeng 84:1–6

    Article  CAS  Google Scholar 

  • Sami M, Suzuki K, Sakamoto K, Kadokura H, Kitamoto K, Yoda K (1998) A plasmid pRH45 of Lactobacillus brevis confers hop resistance. J Gen Appl Microbiol 44:361–363

    Article  PubMed  CAS  Google Scholar 

  • Speelmans G, Poolman B, Abee T, Konings WN (1993a) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci USA 90:7975–7979

    Article  CAS  Google Scholar 

  • Speelmans G, Poolman B, Konings WN (1993b) Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J Bacteriol 175:2060–2066

    CAS  Google Scholar 

  • Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910

    PubMed  CAS  Google Scholar 

  • Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medical plant: antimicrobial action of berberine potentiated by 5′′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA 15:1433–1437

    Article  Google Scholar 

  • Svobodová J, Svoboda P (1988) Membrane fluidity in Bacillus subtilis. Physical change and biological adaptation. Folia Microbiol (Praha) 33:161–169

    Article  Google Scholar 

  • Ten Brink B, Konings WN (1982) Electrochemical proton gradient and lactate concentration in Streptococcus cremoris cells grown in batch culture. J Bacteriol 152:682–686

    PubMed  CAS  Google Scholar 

  • Ten Brink B, Damink C, Joosten HMLJ, Huis in ‘t Veld J (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11:3–84

    Google Scholar 

  • Thomas TD, Batt RD (1968) Survival of Streptococcus lactis under starvation conditions. J Gen Microbiol 50:367–382

    PubMed  CAS  Google Scholar 

  • Thompson DH, Wong KF, Humphry-Baker R, Wheeler JJ, Kim JM, Rananavare SB (1992) Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy, 31P NMR, X-ray scattering, and electron microscopy. J Am Chem Soc 114:9035–9042

    Article  CAS  Google Scholar 

  • Upasani VN, Desai SG, Moldoveanu N, Kates M (1994) Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology 140:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Van de Vossenberg JLCM, Driessen AJM, Konings WN (1999a) Adaptations of the cell membrane for life in extreme environments In: Storey KB, Storey JM (eds) Cell and molecular responses to stress, vol 1: environmental stressors and gene responses. Elsevier, pp 71–89

  • Van de Vossenberg JLCM, Driessen AJM, Da Costa MS, Konings WN (1999b) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta 1419:97–104

    Article  Google Scholar 

  • Van de Vossenberg JLCM, Driessen AJM, Grant WD, Konings WN (1999c) Lipid membranes from halophilic and alkalihalophilic archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles 3:253–257

    Article  Google Scholar 

  • van de Vossenberg JLCM, Ubbink-Kok T, Elferink MGL, Driessen AJM, Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol Microbiol 18:925–932

    Article  PubMed  Google Scholar 

  • Van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJM, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human drug transporter MDR1. Proc Natl Acad Sci USA 93:10668–10672

    Article  PubMed  Google Scholar 

  • Van Veen HW, Konings WN (1997) Multidrug transporters from bacteria to man: similarities in structure and function. Seminar Cancer Biol 8:183–191

    Article  Google Scholar 

  • Van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF (1998a) A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene. Nature 391:291–295

    Article  Google Scholar 

  • van Veen HW, Konings WN (1998b) The ABC family of multidrug transporters in microorganisms. Biochim Biophys Acta 1365:31–36

    Article  Google Scholar 

  • Van Veen HW, Putman M, Margolles A, Sakamoto K, Konings WN (1999) Structure function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta 1461:201–206

    Article  PubMed  Google Scholar 

  • Van Veen HW, Margoles A, Muller M, Higgins CF, Konings WN (2000) The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J 19:2503–2514

    Article  PubMed  Google Scholar 

  • Van Veen HW, Higgins CF, Konings WN (2001) Multidrug transport by ATP binding cassette transporters: a proposed two-cylinder engine mechanism. Res Microbiol 152:365–374

    Article  PubMed  Google Scholar 

  • Veenhoff LM, Heuberger EHML, Poolman B (2001) The lactose transport protein in a cooperative dimer with two sugar translocation pathways. EMBO J 20:3056–3062

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi K, Kinoshita M (1995) Highly stable lipid membranes from archaebacterial extremophiles. Prog Polym Sci 18:763–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wil N. Konings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N. Microbial transport: Adaptations to natural environments. Antonie van Leeuwenhoek 90, 325–342 (2006). https://doi.org/10.1007/s10482-006-9089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9089-3

Keywords

Navigation