Skip to main content
Log in

Structural characterization of rhamnolipid produced by Pseudonomas aeruginosa strain FIN2 isolated from oil reservoir water

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biosurfactant-producing microorganisms inhabiting oil reservoirs are of great potential in industrial applications. Yet, till now, the knowledge about the structure and physicochemical property of their metabolites are still limited. The aim of this study was to purify and structurally characterize the biosurfactant from Pseudomonas aeruginosa strain FIN2, a newly isolated strain from an oil reservoir. The purification was conducted by silica gel column chromatography followed by pre-RP HPLC and the structural characterization was carried out by GC–MS combined with MS/MS. The results show that the biosurfactant produced by FIN2 is rhamnolipid in nature and its four main fractions were identified to be Rha-C10-C10(46.1 %), Rha–Rha-C10-C10(20.1 %), Rha-C8-C10 (7.5 %) and Rha-C10-C12:1(5.5 %), respectively. Meanwhile, the rarely reported rhamnolipid congeners containing β-hydroxy fatty acids of C6, C9, C10:1 and C11 were also proved to be present in the rhamnolipid mixture produced. The rhamnolipid mixture exhibited a strong surface activity by lowering the surface tension of distilled water to 28.6 mN/m with a CMC value of 195 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336. doi:10.1007/s00253-010-2498-2

    Article  CAS  Google Scholar 

  • Almeida PE, Moreira RS, Almeida RCC, Guimaraes AK, Carvalho AS, Quintella C, Esperidia MCA, Taft C (2004) Selection and application of microorganisms to improve oil recovery. Eng Life Sci 4(4):319–325. doi:10.1002/elsc.200420033

    Article  CAS  Google Scholar 

  • Amani H, Muller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas Aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol 170(5):1080–1093. doi:10.1007/s12010-013-0249-4

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  Google Scholar 

  • Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99(9):3843–3849. doi:10.1016/j.biortech.2007.06.048

    Article  CAS  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 85(1):1–8. doi:10.1023/B:Anto.0000020148.45523.41

    Article  CAS  Google Scholar 

  • Crowell EP, Burnett BB (1967) Determination of the carbohydrate composition of wood pulps by gas chromatography of the alditol acetates. Anal Chem 39(1):121–124. doi:10.1021/ac60245a006

    Article  CAS  Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485(2–3):145–152. doi:10.1016/S1388-1981(00)00039-1

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1440(2–3):244–252. doi:10.1016/S1388-1981(99)00129-8

  • Dyke MIV, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39(11):1071–1078. doi:10.1139/m93-162

    Article  Google Scholar 

  • Golabi E, Sogh SRMP, Hosseini SN, Gholamzadeh MA (2012) Biosurfactant production by microorganism for enhanced oil recovery. Int J Sci Eng Res 3(7):1–6

    Google Scholar 

  • Henkel M, Muller MM, Kugler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47(8):1207–1219. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112(6):674–680. doi:10.1002/ejlt.201000030

    Article  CAS  Google Scholar 

  • Hoskova M, Schreiberova O, Jezdik R, Chudoba J, Masak J, Sigler K, Rezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516. doi:10.1016/j.biortech.2012.12.085

    Article  CAS  Google Scholar 

  • Howe J, Bauer J, Andra J, Schromm AB, Ernst M, Rossle M, Zahringer U, Rademann J, Brandenburg K (2006) Biophysical characterization of synthetic rhamnolipids. FEBS J 273(22):5101–5112. doi:10.1111/j.1742-4658.2006.05507.x

    Article  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A Glyco-lipide produced by Pseudomonas Aeruginosa. J Am Chem Soc 71(12):4124–4126. doi:10.1021/ja01180a073

    Article  CAS  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interf Sci 7 (1–2):12–20. doi:10.1016/S1359-0294(02)00007-9

    Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51(1):22–32

    Article  CAS  Google Scholar 

  • Li AH, Xu MY, Sun W, Sun GP (2011) Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl Biochem Biotechnol 163(5):600–611. doi:10.1007/s12010-010-9066-1

    Article  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54(5):625–633

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (1999) High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 864(2):211–220

    Article  CAS  Google Scholar 

  • Mehdi S, Dondapati JS, Rahman PKSM (2011) Influence of nitrogen and phosphorus on rhamnolipid biosurfactant production by Pseudomonas aeruginosa DS10-129 using glycerol as carbon source. Biotechnology 10:183–189

    Article  CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747

    CAS  Google Scholar 

  • Nie MQ, Yin XH, Ren CY, Wang Y, Xu F, Shen QR (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643. doi:10.1016/j.biotechadv.2010.05.013

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005a) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21(6):1593–1600. doi:10.1021/bp050239p

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Haddad R, Goncalves LA, Eberlin MN, Contiero J (2005b) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21(5):1562–1566. doi:10.1021/bp050198x

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2010) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160(7):2066–2074. doi:10.1007/s12010-009-8707-8

    Article  CAS  Google Scholar 

  • Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. Adv Biochem Eng Biotechnol 53:89–118

    CAS  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72(1):132–138. doi:10.1007/s00253-005-0234-0

    Article  CAS  Google Scholar 

  • Price NP, Ray KJ, Vermillion K, Kuo TM (2009) MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohydr Res 344(2):204–209. doi:10.1016/j.carres.2008.10.013S0008-6215(08)00508-9

    Article  CAS  Google Scholar 

  • Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15(6):697–709. doi:10.1007/s00792-011-0400-5

    Article  CAS  Google Scholar 

  • Rikalovic MG, Gojgic-Cvijovic G, Vrvic MM, Karadzic I (2012) Production and characterization of rhamnolipids from Pseudomonas aeruginosa san-ai. J Serb Chem Soc 77(1):27–42. doi:10.2298/Jsc110211156r

    Article  CAS  Google Scholar 

  • Rooney AP, Price NPJ, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295(1):82–87. doi:10.1111/j.1574-6968.2009.01581.x

    Article  CAS  Google Scholar 

  • Sarachat T, Pornsunthorntawee O, Chavadej S, Rujiravanit R (2010) Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresour Technol 101(1):324–330. doi:10.1016/j.biortech.2009.08.012

    Article  CAS  Google Scholar 

  • Soberon-Chavez G, Lepine F, Deziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725. doi:10.1007/s00253-005-0150-3

    Article  CAS  Google Scholar 

  • Syldatk C, Wagner F (1987) Production of biosurfactant. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology surfactant science. Marcel Dekker, New York, pp 89–120

    Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C 40(1–2):51–60

    CAS  Google Scholar 

  • Thanomsub B, Pumeechockchai W, Limtrakul A, Arunrattiyakorn P, Petchleelaha W, Nitoda T, Kanzaki H (2006) Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresourc Technol 97 (18):2457–2461. doi:10.1016/j.biortech.2005.10.029

    Google Scholar 

  • Yang SZ, Wei DZ, Mu BZ (2007) Determination of the structure of the fatty acid chain in a cyclic lipopeptide using GC-MS. J Biochem Biophys Methods 70(3):519–523. doi:10.1016/j.jbbm.2007.01.005

    Article  CAS  Google Scholar 

  • Zhang F, She YH, Li HM, Zhang XT, Shu FC, Wang ZL, Yu LJ, Hou DJ (2012) Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir. Appl Microbiol Biotechnol 95(3):811–821. doi:10.1007/s00253-011-3717-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 863 Program (Grant No. 2013AA064403) and the National Natural Science Foundation of China (Grant No. 41273084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Zhong Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JF., Wu, G., Yang, SZ. et al. Structural characterization of rhamnolipid produced by Pseudonomas aeruginosa strain FIN2 isolated from oil reservoir water. World J Microbiol Biotechnol 30, 1473–1484 (2014). https://doi.org/10.1007/s11274-013-1565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1565-0

Keywords

Navigation