Skip to main content
Log in

Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermophilic bacterial cultures were isolated from a hot spring environment on hydrocarbon containing mineral salts media. One strain identified as Pseudomonas aeruginosa AP02-1 was tested for the ability to utilize a range of hydrocarbons both n-alkanes and polycyclic aromatic hydrocarbons as sole carbon source. Strain AP02-1 had an optimum growth temperature of 45°C and degraded 99% of crude oil 1% (v/v) and diesel oil 2% (v/v) when added to a basal mineral medium within 7 days of incubation. Surface activity measurements indicated that biosurfactants, mainly glycolipid in nature, were produced during the microbial growth on hydrocarbons as well as on both water-soluble and insoluble substrates. Mass spectrometry analysis showed different types of rhamnolipid production depending on the carbon substrate and culture conditions. Grown on glycerol, P. aeruginosa AP02-1 produced a mixture of ten rhamnolipid homologues, of which Rha-Rha-C10-C10 and Rha-C10-C10 were predominant. Rhamnolipid-containing culture broths reduced the surface tension to ≈28 mN and gave stable emulsions with a number of hydrocarbons and remained effective after sterilization. Microscopic observations of the emulsions suggested that hydrophobic cells acted as emulsion-stabilizing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arino S, Marchal R, Vandecasteele J-P (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168

    Article  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banat IM (1995a) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12

    Article  CAS  Google Scholar 

  • Banat IM (1995b) Characterization of biosurfactants and their use in pollution removal—state of the art (review). Acta Biotechnol 15:251–267

    Article  CAS  Google Scholar 

  • Banat IM, Samarah N, Murad M, Horne R, Banerjee S (1991) Biosurfactant production and use in oil tank clean-up. W J Microb Biotechnol 7:80–88

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb.nov. Int J Syst Evol Microbiol 54:2197–2201

    Article  CAS  PubMed  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 85:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond PL, Smirga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial predominantly lithotrophic biofilm at extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau J-Y, Vandecasteele J-P (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86:421–428

    Article  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  PubMed  Google Scholar 

  • Cooper DJ, Goldenberg BG (1987) Surface active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    Article  PubMed  PubMed Central  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Article  PubMed  Google Scholar 

  • Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152

    Article  PubMed  Google Scholar 

  • Dèziel E, Comeau Y, Villemur R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficients in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil–water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–302

    CAS  PubMed  Google Scholar 

  • Korda A, Santas P, Tenente A, Santas R (1997) Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used. Appl Microbiol Biotechnol 48:677–686

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N, Gray NCC, Cairns WL (1983) Microbial emulsifiers and de-emulsifiers. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 575–592

    Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  PubMed  Google Scholar 

  • Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  CAS  Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM, Rahman TJ, Berzano M (2002) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure–function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu Y, Phale PS (2003) Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885–4890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  • Trevors JT, Thomson DLC, Lee H, Jain DK (1991) A drop-collapsing test for screening surfactants producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CEC EU Structural Funds, Building Sustainable Prosperity, Measure 5.1 ‘Sustainable Management of the Environment and Promotion of the Natural and Built Heritage (BSP7473), Environment and Heritage Service, N. Ireland. We also like to thank Dr. A.R. Taddei of the Centre for Electron Microscopy at University of Tuscia, Italy, for EM negative stain analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Banat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perfumo, A., Banat, I.M., Canganella, F. et al. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72, 132–138 (2006). https://doi.org/10.1007/s00253-005-0234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0234-0

Keywords

Navigation